Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephom | Structured version Visualization version GIF version |
Description: From canth2 8917, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10325 (in the form of cfpwsdom 10340), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
Ref | Expression |
---|---|
alephom | ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 8901 | . 2 ⊢ ¬ ω ≺ ω | |
2 | 2onn 8472 | . . . . . 6 ⊢ 2o ∈ ω | |
3 | 2 | elexi 3451 | . . . . 5 ⊢ 2o ∈ V |
4 | domrefg 8775 | . . . . 5 ⊢ (2o ∈ V → 2o ≼ 2o) | |
5 | 3 | cfpwsdom 10340 | . . . . 5 ⊢ (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅))))) |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) |
7 | aleph0 9822 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (ℵ‘∅) = ω) |
9 | 7 | oveq2i 7286 | . . . . . . . . . 10 ⊢ (2o ↑m (ℵ‘∅)) = (2o ↑m ω) |
10 | 9 | fveq2i 6777 | . . . . . . . . 9 ⊢ (card‘(2o ↑m (ℵ‘∅))) = (card‘(2o ↑m ω)) |
11 | 10 | eqeq1i 2743 | . . . . . . . 8 ⊢ ((card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2o ↑m ω)) = (ℵ‘ω)) |
12 | 11 | biimpri 227 | . . . . . . 7 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω)) |
13 | 12 | fveq2d 6778 | . . . . . 6 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = (cf‘(ℵ‘ω))) |
14 | limom 7728 | . . . . . . . 8 ⊢ Lim ω | |
15 | alephsing 10032 | . . . . . . . 8 ⊢ (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω)) | |
16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ (cf‘(ℵ‘ω)) = (cf‘ω) |
17 | cfom 10020 | . . . . . . 7 ⊢ (cf‘ω) = ω | |
18 | 16, 17 | eqtri 2766 | . . . . . 6 ⊢ (cf‘(ℵ‘ω)) = ω |
19 | 13, 18 | eqtrdi 2794 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = ω) |
20 | 8, 19 | breq12d 5087 | . . . 4 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) ↔ ω ≺ ω)) |
21 | 6, 20 | mpbii 232 | . . 3 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ω ≺ ω) |
22 | 21 | necon3bi 2970 | . 2 ⊢ (¬ ω ≺ ω → (card‘(2o ↑m ω)) ≠ (ℵ‘ω)) |
23 | 1, 22 | ax-mp 5 | 1 ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 class class class wbr 5074 Lim wlim 6267 ‘cfv 6433 (class class class)co 7275 ωcom 7712 2oc2o 8291 ↑m cmap 8615 ≼ cdom 8731 ≺ csdm 8732 cardccrd 9693 ℵcale 9694 cfccf 9695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-smo 8177 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-card 9697 df-aleph 9698 df-cf 9699 df-acn 9700 df-ac 9872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |