MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephom Structured version   Visualization version   GIF version

Theorem alephom 9996
Description: From canth2 8654, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 9980 (in the form of cfpwsdom 9995), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.)
Assertion
Ref Expression
alephom (card‘(2om ω)) ≠ (ℵ‘ω)

Proof of Theorem alephom
StepHypRef Expression
1 sdomirr 8638 . 2 ¬ ω ≺ ω
2 2onn 8249 . . . . . 6 2o ∈ ω
32elexi 3460 . . . . 5 2o ∈ V
4 domrefg 8527 . . . . 5 (2o ∈ V → 2o ≼ 2o)
53cfpwsdom 9995 . . . . 5 (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))))
63, 4, 5mp2b 10 . . . 4 (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅))))
7 aleph0 9477 . . . . . 6 (ℵ‘∅) = ω
87a1i 11 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (ℵ‘∅) = ω)
97oveq2i 7146 . . . . . . . . . 10 (2om (ℵ‘∅)) = (2om ω)
109fveq2i 6648 . . . . . . . . 9 (card‘(2om (ℵ‘∅))) = (card‘(2om ω))
1110eqeq1i 2803 . . . . . . . 8 ((card‘(2om (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2om ω)) = (ℵ‘ω))
1211biimpri 231 . . . . . . 7 ((card‘(2om ω)) = (ℵ‘ω) → (card‘(2om (ℵ‘∅))) = (ℵ‘ω))
1312fveq2d 6649 . . . . . 6 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = (cf‘(ℵ‘ω)))
14 limom 7575 . . . . . . . 8 Lim ω
15 alephsing 9687 . . . . . . . 8 (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω))
1614, 15ax-mp 5 . . . . . . 7 (cf‘(ℵ‘ω)) = (cf‘ω)
17 cfom 9675 . . . . . . 7 (cf‘ω) = ω
1816, 17eqtri 2821 . . . . . 6 (cf‘(ℵ‘ω)) = ω
1913, 18eqtrdi 2849 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = ω)
208, 19breq12d 5043 . . . 4 ((card‘(2om ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))) ↔ ω ≺ ω))
216, 20mpbii 236 . . 3 ((card‘(2om ω)) = (ℵ‘ω) → ω ≺ ω)
2221necon3bi 3013 . 2 (¬ ω ≺ ω → (card‘(2om ω)) ≠ (ℵ‘ω))
231, 22ax-mp 5 1 (card‘(2om ω)) ≠ (ℵ‘ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  c0 4243   class class class wbr 5030  Lim wlim 6160  cfv 6324  (class class class)co 7135  ωcom 7560  2oc2o 8079  m cmap 8389  cdom 8490  csdm 8491  cardccrd 9348  cale 9349  cfccf 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-smo 7966  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-har 9005  df-card 9352  df-aleph 9353  df-cf 9354  df-acn 9355  df-ac 9527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator