![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephom | Structured version Visualization version GIF version |
Description: From canth2 9081, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10514 (in the form of cfpwsdom 10529), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
Ref | Expression |
---|---|
alephom | ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 9065 | . 2 ⊢ ¬ ω ≺ ω | |
2 | 2onn 8593 | . . . . . 6 ⊢ 2o ∈ ω | |
3 | 2 | elexi 3465 | . . . . 5 ⊢ 2o ∈ V |
4 | domrefg 8934 | . . . . 5 ⊢ (2o ∈ V → 2o ≼ 2o) | |
5 | 3 | cfpwsdom 10529 | . . . . 5 ⊢ (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅))))) |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) |
7 | aleph0 10011 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (ℵ‘∅) = ω) |
9 | 7 | oveq2i 7373 | . . . . . . . . . 10 ⊢ (2o ↑m (ℵ‘∅)) = (2o ↑m ω) |
10 | 9 | fveq2i 6850 | . . . . . . . . 9 ⊢ (card‘(2o ↑m (ℵ‘∅))) = (card‘(2o ↑m ω)) |
11 | 10 | eqeq1i 2736 | . . . . . . . 8 ⊢ ((card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2o ↑m ω)) = (ℵ‘ω)) |
12 | 11 | biimpri 227 | . . . . . . 7 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω)) |
13 | 12 | fveq2d 6851 | . . . . . 6 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = (cf‘(ℵ‘ω))) |
14 | limom 7823 | . . . . . . . 8 ⊢ Lim ω | |
15 | alephsing 10221 | . . . . . . . 8 ⊢ (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω)) | |
16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ (cf‘(ℵ‘ω)) = (cf‘ω) |
17 | cfom 10209 | . . . . . . 7 ⊢ (cf‘ω) = ω | |
18 | 16, 17 | eqtri 2759 | . . . . . 6 ⊢ (cf‘(ℵ‘ω)) = ω |
19 | 13, 18 | eqtrdi 2787 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = ω) |
20 | 8, 19 | breq12d 5123 | . . . 4 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) ↔ ω ≺ ω)) |
21 | 6, 20 | mpbii 232 | . . 3 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ω ≺ ω) |
22 | 21 | necon3bi 2966 | . 2 ⊢ (¬ ω ≺ ω → (card‘(2o ↑m ω)) ≠ (ℵ‘ω)) |
23 | 1, 22 | ax-mp 5 | 1 ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 Vcvv 3446 ∅c0 4287 class class class wbr 5110 Lim wlim 6323 ‘cfv 6501 (class class class)co 7362 ωcom 7807 2oc2o 8411 ↑m cmap 8772 ≼ cdom 8888 ≺ csdm 8889 cardccrd 9880 ℵcale 9881 cfccf 9882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9586 ax-ac2 10408 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-smo 8297 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-er 8655 df-map 8774 df-ixp 8843 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-oi 9455 df-har 9502 df-card 9884 df-aleph 9885 df-cf 9886 df-acn 9887 df-ac 10061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |