MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephom Structured version   Visualization version   GIF version

Theorem alephom 10538
Description: From canth2 9094, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10522 (in the form of cfpwsdom 10537), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.)
Assertion
Ref Expression
alephom (card‘(2om ω)) ≠ (ℵ‘ω)

Proof of Theorem alephom
StepHypRef Expression
1 sdomirr 9078 . 2 ¬ ω ≺ ω
2 2onn 8606 . . . . . 6 2o ∈ ω
32elexi 3470 . . . . 5 2o ∈ V
4 domrefg 8958 . . . . 5 (2o ∈ V → 2o ≼ 2o)
53cfpwsdom 10537 . . . . 5 (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))))
63, 4, 5mp2b 10 . . . 4 (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅))))
7 aleph0 10019 . . . . . 6 (ℵ‘∅) = ω
87a1i 11 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (ℵ‘∅) = ω)
97oveq2i 7398 . . . . . . . . . 10 (2om (ℵ‘∅)) = (2om ω)
109fveq2i 6861 . . . . . . . . 9 (card‘(2om (ℵ‘∅))) = (card‘(2om ω))
1110eqeq1i 2734 . . . . . . . 8 ((card‘(2om (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2om ω)) = (ℵ‘ω))
1211biimpri 228 . . . . . . 7 ((card‘(2om ω)) = (ℵ‘ω) → (card‘(2om (ℵ‘∅))) = (ℵ‘ω))
1312fveq2d 6862 . . . . . 6 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = (cf‘(ℵ‘ω)))
14 limom 7858 . . . . . . . 8 Lim ω
15 alephsing 10229 . . . . . . . 8 (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω))
1614, 15ax-mp 5 . . . . . . 7 (cf‘(ℵ‘ω)) = (cf‘ω)
17 cfom 10217 . . . . . . 7 (cf‘ω) = ω
1816, 17eqtri 2752 . . . . . 6 (cf‘(ℵ‘ω)) = ω
1913, 18eqtrdi 2780 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = ω)
208, 19breq12d 5120 . . . 4 ((card‘(2om ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))) ↔ ω ≺ ω))
216, 20mpbii 233 . . 3 ((card‘(2om ω)) = (ℵ‘ω) → ω ≺ ω)
2221necon3bi 2951 . 2 (¬ ω ≺ ω → (card‘(2om ω)) ≠ (ℵ‘ω))
231, 22ax-mp 5 1 (card‘(2om ω)) ≠ (ℵ‘ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  c0 4296   class class class wbr 5107  Lim wlim 6333  cfv 6511  (class class class)co 7387  ωcom 7842  2oc2o 8428  m cmap 8799  cdom 8916  csdm 8917  cardccrd 9888  cale 9889  cfccf 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-har 9510  df-card 9892  df-aleph 9893  df-cf 9894  df-acn 9895  df-ac 10069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator