| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephom | Structured version Visualization version GIF version | ||
| Description: From canth2 9094, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10522 (in the form of cfpwsdom 10537), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
| Ref | Expression |
|---|---|
| alephom | ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr 9078 | . 2 ⊢ ¬ ω ≺ ω | |
| 2 | 2onn 8606 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | 2 | elexi 3470 | . . . . 5 ⊢ 2o ∈ V |
| 4 | domrefg 8958 | . . . . 5 ⊢ (2o ∈ V → 2o ≼ 2o) | |
| 5 | 3 | cfpwsdom 10537 | . . . . 5 ⊢ (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅))))) |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) |
| 7 | aleph0 10019 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (ℵ‘∅) = ω) |
| 9 | 7 | oveq2i 7398 | . . . . . . . . . 10 ⊢ (2o ↑m (ℵ‘∅)) = (2o ↑m ω) |
| 10 | 9 | fveq2i 6861 | . . . . . . . . 9 ⊢ (card‘(2o ↑m (ℵ‘∅))) = (card‘(2o ↑m ω)) |
| 11 | 10 | eqeq1i 2734 | . . . . . . . 8 ⊢ ((card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2o ↑m ω)) = (ℵ‘ω)) |
| 12 | 11 | biimpri 228 | . . . . . . 7 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω)) |
| 13 | 12 | fveq2d 6862 | . . . . . 6 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = (cf‘(ℵ‘ω))) |
| 14 | limom 7858 | . . . . . . . 8 ⊢ Lim ω | |
| 15 | alephsing 10229 | . . . . . . . 8 ⊢ (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ (cf‘(ℵ‘ω)) = (cf‘ω) |
| 17 | cfom 10217 | . . . . . . 7 ⊢ (cf‘ω) = ω | |
| 18 | 16, 17 | eqtri 2752 | . . . . . 6 ⊢ (cf‘(ℵ‘ω)) = ω |
| 19 | 13, 18 | eqtrdi 2780 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = ω) |
| 20 | 8, 19 | breq12d 5120 | . . . 4 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) ↔ ω ≺ ω)) |
| 21 | 6, 20 | mpbii 233 | . . 3 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ω ≺ ω) |
| 22 | 21 | necon3bi 2951 | . 2 ⊢ (¬ ω ≺ ω → (card‘(2o ↑m ω)) ≠ (ℵ‘ω)) |
| 23 | 1, 22 | ax-mp 5 | 1 ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 class class class wbr 5107 Lim wlim 6333 ‘cfv 6511 (class class class)co 7387 ωcom 7842 2oc2o 8428 ↑m cmap 8799 ≼ cdom 8916 ≺ csdm 8917 cardccrd 9888 ℵcale 9889 cfccf 9890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-smo 8315 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-har 9510 df-card 9892 df-aleph 9893 df-cf 9894 df-acn 9895 df-ac 10069 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |