MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephom Structured version   Visualization version   GIF version

Theorem alephom 10604
Description: From canth2 9149, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10588 (in the form of cfpwsdom 10603), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.)
Assertion
Ref Expression
alephom (card‘(2om ω)) ≠ (ℵ‘ω)

Proof of Theorem alephom
StepHypRef Expression
1 sdomirr 9133 . 2 ¬ ω ≺ ω
2 2onn 8659 . . . . . 6 2o ∈ ω
32elexi 3487 . . . . 5 2o ∈ V
4 domrefg 9006 . . . . 5 (2o ∈ V → 2o ≼ 2o)
53cfpwsdom 10603 . . . . 5 (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))))
63, 4, 5mp2b 10 . . . 4 (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅))))
7 aleph0 10085 . . . . . 6 (ℵ‘∅) = ω
87a1i 11 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (ℵ‘∅) = ω)
97oveq2i 7421 . . . . . . . . . 10 (2om (ℵ‘∅)) = (2om ω)
109fveq2i 6884 . . . . . . . . 9 (card‘(2om (ℵ‘∅))) = (card‘(2om ω))
1110eqeq1i 2741 . . . . . . . 8 ((card‘(2om (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2om ω)) = (ℵ‘ω))
1211biimpri 228 . . . . . . 7 ((card‘(2om ω)) = (ℵ‘ω) → (card‘(2om (ℵ‘∅))) = (ℵ‘ω))
1312fveq2d 6885 . . . . . 6 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = (cf‘(ℵ‘ω)))
14 limom 7882 . . . . . . . 8 Lim ω
15 alephsing 10295 . . . . . . . 8 (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω))
1614, 15ax-mp 5 . . . . . . 7 (cf‘(ℵ‘ω)) = (cf‘ω)
17 cfom 10283 . . . . . . 7 (cf‘ω) = ω
1816, 17eqtri 2759 . . . . . 6 (cf‘(ℵ‘ω)) = ω
1913, 18eqtrdi 2787 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = ω)
208, 19breq12d 5137 . . . 4 ((card‘(2om ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))) ↔ ω ≺ ω))
216, 20mpbii 233 . . 3 ((card‘(2om ω)) = (ℵ‘ω) → ω ≺ ω)
2221necon3bi 2959 . 2 (¬ ω ≺ ω → (card‘(2om ω)) ≠ (ℵ‘ω))
231, 22ax-mp 5 1 (card‘(2om ω)) ≠ (ℵ‘ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  c0 4313   class class class wbr 5124  Lim wlim 6358  cfv 6536  (class class class)co 7410  ωcom 7866  2oc2o 8479  m cmap 8845  cdom 8962  csdm 8963  cardccrd 9954  cale 9955  cfccf 9956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-ac2 10482
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-smo 8365  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-har 9576  df-card 9958  df-aleph 9959  df-cf 9960  df-acn 9961  df-ac 10135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator