MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephom Structured version   Visualization version   GIF version

Theorem alephom 10468
Description: From canth2 9038, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10452 (in the form of cfpwsdom 10467), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.)
Assertion
Ref Expression
alephom (card‘(2om ω)) ≠ (ℵ‘ω)

Proof of Theorem alephom
StepHypRef Expression
1 sdomirr 9022 . 2 ¬ ω ≺ ω
2 2onn 8552 . . . . . 6 2o ∈ ω
32elexi 3457 . . . . 5 2o ∈ V
4 domrefg 8904 . . . . 5 (2o ∈ V → 2o ≼ 2o)
53cfpwsdom 10467 . . . . 5 (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))))
63, 4, 5mp2b 10 . . . 4 (ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅))))
7 aleph0 9949 . . . . . 6 (ℵ‘∅) = ω
87a1i 11 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (ℵ‘∅) = ω)
97oveq2i 7352 . . . . . . . . . 10 (2om (ℵ‘∅)) = (2om ω)
109fveq2i 6820 . . . . . . . . 9 (card‘(2om (ℵ‘∅))) = (card‘(2om ω))
1110eqeq1i 2735 . . . . . . . 8 ((card‘(2om (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2om ω)) = (ℵ‘ω))
1211biimpri 228 . . . . . . 7 ((card‘(2om ω)) = (ℵ‘ω) → (card‘(2om (ℵ‘∅))) = (ℵ‘ω))
1312fveq2d 6821 . . . . . 6 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = (cf‘(ℵ‘ω)))
14 limom 7807 . . . . . . . 8 Lim ω
15 alephsing 10159 . . . . . . . 8 (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω))
1614, 15ax-mp 5 . . . . . . 7 (cf‘(ℵ‘ω)) = (cf‘ω)
17 cfom 10147 . . . . . . 7 (cf‘ω) = ω
1816, 17eqtri 2753 . . . . . 6 (cf‘(ℵ‘ω)) = ω
1913, 18eqtrdi 2781 . . . . 5 ((card‘(2om ω)) = (ℵ‘ω) → (cf‘(card‘(2om (ℵ‘∅)))) = ω)
208, 19breq12d 5102 . . . 4 ((card‘(2om ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2om (ℵ‘∅)))) ↔ ω ≺ ω))
216, 20mpbii 233 . . 3 ((card‘(2om ω)) = (ℵ‘ω) → ω ≺ ω)
2221necon3bi 2952 . 2 (¬ ω ≺ ω → (card‘(2om ω)) ≠ (ℵ‘ω))
231, 22ax-mp 5 1 (card‘(2om ω)) ≠ (ℵ‘ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  c0 4281   class class class wbr 5089  Lim wlim 6303  cfv 6477  (class class class)co 7341  ωcom 7791  2oc2o 8374  m cmap 8745  cdom 8862  csdm 8863  cardccrd 9820  cale 9821  cfccf 9822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-ac2 10346
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-smo 8261  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-har 9438  df-card 9824  df-aleph 9825  df-cf 9826  df-acn 9827  df-ac 9999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator