| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephom | Structured version Visualization version GIF version | ||
| Description: From canth2 9149, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10588 (in the form of cfpwsdom 10603), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
| Ref | Expression |
|---|---|
| alephom | ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr 9133 | . 2 ⊢ ¬ ω ≺ ω | |
| 2 | 2onn 8659 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | 2 | elexi 3487 | . . . . 5 ⊢ 2o ∈ V |
| 4 | domrefg 9006 | . . . . 5 ⊢ (2o ∈ V → 2o ≼ 2o) | |
| 5 | 3 | cfpwsdom 10603 | . . . . 5 ⊢ (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅))))) |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) |
| 7 | aleph0 10085 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (ℵ‘∅) = ω) |
| 9 | 7 | oveq2i 7421 | . . . . . . . . . 10 ⊢ (2o ↑m (ℵ‘∅)) = (2o ↑m ω) |
| 10 | 9 | fveq2i 6884 | . . . . . . . . 9 ⊢ (card‘(2o ↑m (ℵ‘∅))) = (card‘(2o ↑m ω)) |
| 11 | 10 | eqeq1i 2741 | . . . . . . . 8 ⊢ ((card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2o ↑m ω)) = (ℵ‘ω)) |
| 12 | 11 | biimpri 228 | . . . . . . 7 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω)) |
| 13 | 12 | fveq2d 6885 | . . . . . 6 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = (cf‘(ℵ‘ω))) |
| 14 | limom 7882 | . . . . . . . 8 ⊢ Lim ω | |
| 15 | alephsing 10295 | . . . . . . . 8 ⊢ (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ (cf‘(ℵ‘ω)) = (cf‘ω) |
| 17 | cfom 10283 | . . . . . . 7 ⊢ (cf‘ω) = ω | |
| 18 | 16, 17 | eqtri 2759 | . . . . . 6 ⊢ (cf‘(ℵ‘ω)) = ω |
| 19 | 13, 18 | eqtrdi 2787 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = ω) |
| 20 | 8, 19 | breq12d 5137 | . . . 4 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) ↔ ω ≺ ω)) |
| 21 | 6, 20 | mpbii 233 | . . 3 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ω ≺ ω) |
| 22 | 21 | necon3bi 2959 | . 2 ⊢ (¬ ω ≺ ω → (card‘(2o ↑m ω)) ≠ (ℵ‘ω)) |
| 23 | 1, 22 | ax-mp 5 | 1 ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∅c0 4313 class class class wbr 5124 Lim wlim 6358 ‘cfv 6536 (class class class)co 7410 ωcom 7866 2oc2o 8479 ↑m cmap 8845 ≼ cdom 8962 ≺ csdm 8963 cardccrd 9954 ℵcale 9955 cfccf 9956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-smo 8365 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-har 9576 df-card 9958 df-aleph 9959 df-cf 9960 df-acn 9961 df-ac 10135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |