| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephom | Structured version Visualization version GIF version | ||
| Description: From canth2 9049, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10466 (in the form of cfpwsdom 10481), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
| Ref | Expression |
|---|---|
| alephom | ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr 9033 | . 2 ⊢ ¬ ω ≺ ω | |
| 2 | 2onn 8563 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | 2 | elexi 3459 | . . . . 5 ⊢ 2o ∈ V |
| 4 | domrefg 8915 | . . . . 5 ⊢ (2o ∈ V → 2o ≼ 2o) | |
| 5 | 3 | cfpwsdom 10481 | . . . . 5 ⊢ (2o ≼ 2o → (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅))))) |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ (ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) |
| 7 | aleph0 9963 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (ℵ‘∅) = ω) |
| 9 | 7 | oveq2i 7363 | . . . . . . . . . 10 ⊢ (2o ↑m (ℵ‘∅)) = (2o ↑m ω) |
| 10 | 9 | fveq2i 6831 | . . . . . . . . 9 ⊢ (card‘(2o ↑m (ℵ‘∅))) = (card‘(2o ↑m ω)) |
| 11 | 10 | eqeq1i 2736 | . . . . . . . 8 ⊢ ((card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2o ↑m ω)) = (ℵ‘ω)) |
| 12 | 11 | biimpri 228 | . . . . . . 7 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (card‘(2o ↑m (ℵ‘∅))) = (ℵ‘ω)) |
| 13 | 12 | fveq2d 6832 | . . . . . 6 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = (cf‘(ℵ‘ω))) |
| 14 | limom 7818 | . . . . . . . 8 ⊢ Lim ω | |
| 15 | alephsing 10173 | . . . . . . . 8 ⊢ (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ (cf‘(ℵ‘ω)) = (cf‘ω) |
| 17 | cfom 10161 | . . . . . . 7 ⊢ (cf‘ω) = ω | |
| 18 | 16, 17 | eqtri 2754 | . . . . . 6 ⊢ (cf‘(ℵ‘ω)) = ω |
| 19 | 13, 18 | eqtrdi 2782 | . . . . 5 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → (cf‘(card‘(2o ↑m (ℵ‘∅)))) = ω) |
| 20 | 8, 19 | breq12d 5106 | . . . 4 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2o ↑m (ℵ‘∅)))) ↔ ω ≺ ω)) |
| 21 | 6, 20 | mpbii 233 | . . 3 ⊢ ((card‘(2o ↑m ω)) = (ℵ‘ω) → ω ≺ ω) |
| 22 | 21 | necon3bi 2954 | . 2 ⊢ (¬ ω ≺ ω → (card‘(2o ↑m ω)) ≠ (ℵ‘ω)) |
| 23 | 1, 22 | ax-mp 5 | 1 ⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4282 class class class wbr 5093 Lim wlim 6313 ‘cfv 6487 (class class class)co 7352 ωcom 7802 2oc2o 8385 ↑m cmap 8756 ≼ cdom 8873 ≺ csdm 8874 cardccrd 9834 ℵcale 9835 cfccf 9836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-ac2 10360 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-smo 8272 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9402 df-har 9449 df-card 9838 df-aleph 9839 df-cf 9840 df-acn 9841 df-ac 10013 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |