Proof of Theorem volioc
| Step | Hyp | Ref
| Expression |
| 1 | | vol0 45979 |
. . . 4
⊢
(vol‘∅) = 0 |
| 2 | | oveq2 7440 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐴(,]𝐴) = (𝐴(,]𝐵)) |
| 3 | 2 | eqcomd 2742 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴(,]𝐵) = (𝐴(,]𝐴)) |
| 4 | | leid 11358 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
| 5 | | rexr 11308 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
| 6 | | ioc0 13435 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → ((𝐴(,]𝐴) = ∅ ↔ 𝐴 ≤ 𝐴)) |
| 7 | 5, 5, 6 | syl2anc 584 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → ((𝐴(,]𝐴) = ∅ ↔ 𝐴 ≤ 𝐴)) |
| 8 | 4, 7 | mpbird 257 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴(,]𝐴) = ∅) |
| 9 | 3, 8 | sylan9eqr 2798 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴(,]𝐵) = ∅) |
| 10 | 9 | fveq2d 6909 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘∅)) |
| 11 | | eqcom 2743 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
| 12 | 11 | biimpi 216 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → 𝐵 = 𝐴) |
| 13 | 12 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 = 𝐴) |
| 14 | | recn 11246 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ∈ ℂ) |
| 16 | 13, 15 | eqeltrd 2840 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ∈ ℂ) |
| 17 | 16, 13 | subeq0bd 11690 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐵 − 𝐴) = 0) |
| 18 | 1, 10, 17 | 3eqtr4a 2802 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) |
| 19 | 18 | 3ad2antl1 1185 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) |
| 20 | | simpl1 1191 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ) |
| 21 | | simpl2 1192 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ) |
| 22 | | simpl3 1193 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
| 23 | | eqcom 2743 |
. . . . . . 7
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
| 24 | 23 | biimpi 216 |
. . . . . 6
⊢ (𝐵 = 𝐴 → 𝐴 = 𝐵) |
| 25 | 24 | necon3bi 2966 |
. . . . 5
⊢ (¬
𝐴 = 𝐵 → 𝐵 ≠ 𝐴) |
| 26 | 25 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ≠ 𝐴) |
| 27 | 20, 21, 22, 26 | leneltd 11416 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 < 𝐵) |
| 28 | 5 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈
ℝ*) |
| 29 | | rexr 11308 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
| 30 | 29 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈
ℝ*) |
| 31 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) |
| 32 | | ioounsn 13518 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
| 33 | 28, 30, 31, 32 | syl3anc 1372 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
| 34 | 33 | eqcomd 2742 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵})) |
| 35 | 34 | fveq2d 6909 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘((𝐴(,)𝐵) ∪ {𝐵}))) |
| 36 | | ioombl 25601 |
. . . . . 6
⊢ (𝐴(,)𝐵) ∈ dom vol |
| 37 | 36 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol) |
| 38 | | snmbl 45983 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → {𝐵} ∈ dom
vol) |
| 39 | 38 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → {𝐵} ∈ dom vol) |
| 40 | | ubioo 13420 |
. . . . . . 7
⊢ ¬
𝐵 ∈ (𝐴(,)𝐵) |
| 41 | | disjsn 4710 |
. . . . . . 7
⊢ (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
| 42 | 40, 41 | mpbir 231 |
. . . . . 6
⊢ ((𝐴(,)𝐵) ∩ {𝐵}) = ∅ |
| 43 | 42 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅) |
| 44 | | ioovolcl 25606 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(vol‘(𝐴(,)𝐵)) ∈
ℝ) |
| 45 | 44 | 3adant3 1132 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
| 46 | | volsn 45987 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ →
(vol‘{𝐵}) =
0) |
| 47 | | 0red 11265 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → 0 ∈
ℝ) |
| 48 | 46, 47 | eqeltrd 2840 |
. . . . . 6
⊢ (𝐵 ∈ ℝ →
(vol‘{𝐵}) ∈
ℝ) |
| 49 | 48 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) ∈ ℝ) |
| 50 | | volun 25581 |
. . . . 5
⊢ ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐵}) ∈ ℝ)) →
(vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵}))) |
| 51 | 37, 39, 43, 45, 49, 50 | syl32anc 1379 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵}))) |
| 52 | | simp1 1136 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 53 | | simp2 1137 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 54 | 52, 53, 31 | ltled 11410 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
| 55 | | volioo 25605 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 56 | 52, 53, 54, 55 | syl3anc 1372 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 57 | 46 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) = 0) |
| 58 | 56, 57 | oveq12d 7450 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = ((𝐵 − 𝐴) + 0)) |
| 59 | 53 | recnd 11290 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ) |
| 60 | 14 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ) |
| 61 | 59, 60 | subcld 11621 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ∈ ℂ) |
| 62 | 61 | addridd 11462 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐵 − 𝐴) + 0) = (𝐵 − 𝐴)) |
| 63 | 58, 62 | eqtrd 2776 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = (𝐵 − 𝐴)) |
| 64 | 35, 51, 63 | 3eqtrd 2780 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) |
| 65 | 20, 21, 27, 64 | syl3anc 1372 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) |
| 66 | 19, 65 | pm2.61dan 812 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) |