Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volioc Structured version   Visualization version   GIF version

Theorem volioc 45943
Description: The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
volioc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))

Proof of Theorem volioc
StepHypRef Expression
1 vol0 45930 . . . 4 (vol‘∅) = 0
2 oveq2 7377 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(,]𝐴) = (𝐴(,]𝐵))
32eqcomd 2735 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,]𝐵) = (𝐴(,]𝐴))
4 leid 11246 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴𝐴)
5 rexr 11196 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
6 ioc0 13329 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐴(,]𝐴) = ∅ ↔ 𝐴𝐴))
75, 5, 6syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴(,]𝐴) = ∅ ↔ 𝐴𝐴))
84, 7mpbird 257 . . . . . 6 (𝐴 ∈ ℝ → (𝐴(,]𝐴) = ∅)
93, 8sylan9eqr 2786 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴(,]𝐵) = ∅)
109fveq2d 6844 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘∅))
11 eqcom 2736 . . . . . . . 8 (𝐴 = 𝐵𝐵 = 𝐴)
1211biimpi 216 . . . . . . 7 (𝐴 = 𝐵𝐵 = 𝐴)
1312adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 = 𝐴)
14 recn 11134 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ∈ ℂ)
1613, 15eqeltrd 2828 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ∈ ℂ)
1716, 13subeq0bd 11580 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐵𝐴) = 0)
181, 10, 173eqtr4a 2790 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
19183ad2antl1 1186 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
20 simpl1 1192 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
21 simpl2 1193 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
22 simpl3 1194 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
23 eqcom 2736 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
2423biimpi 216 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
2524necon3bi 2951 . . . . 5 𝐴 = 𝐵𝐵𝐴)
2625adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
2720, 21, 22, 26leneltd 11304 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 < 𝐵)
2853ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
29 rexr 11196 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
30293ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
31 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
32 ioounsn 13414 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3328, 30, 31, 32syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3433eqcomd 2735 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
3534fveq2d 6844 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘((𝐴(,)𝐵) ∪ {𝐵})))
36 ioombl 25442 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
3736a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
38 snmbl 45934 . . . . . 6 (𝐵 ∈ ℝ → {𝐵} ∈ dom vol)
39383ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → {𝐵} ∈ dom vol)
40 ubioo 13314 . . . . . . 7 ¬ 𝐵 ∈ (𝐴(,)𝐵)
41 disjsn 4671 . . . . . . 7 (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵))
4240, 41mpbir 231 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐵}) = ∅
4342a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅)
44 ioovolcl 25447 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
45443adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
46 volsn 45938 . . . . . . 7 (𝐵 ∈ ℝ → (vol‘{𝐵}) = 0)
47 0red 11153 . . . . . . 7 (𝐵 ∈ ℝ → 0 ∈ ℝ)
4846, 47eqeltrd 2828 . . . . . 6 (𝐵 ∈ ℝ → (vol‘{𝐵}) ∈ ℝ)
49483ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) ∈ ℝ)
50 volun 25422 . . . . 5 ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐵}) ∈ ℝ)) → (vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})))
5137, 39, 43, 45, 49, 50syl32anc 1380 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})))
52 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
53 simp2 1137 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
5452, 53, 31ltled 11298 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
55 volioo 25446 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
5652, 53, 54, 55syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
57463ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) = 0)
5856, 57oveq12d 7387 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = ((𝐵𝐴) + 0))
5953recnd 11178 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
60143ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
6159, 60subcld 11509 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
6261addridd 11350 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐵𝐴) + 0) = (𝐵𝐴))
6358, 62eqtrd 2764 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = (𝐵𝐴))
6435, 51, 633eqtrd 2768 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
6520, 21, 27, 64syl3anc 1373 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
6619, 65pm2.61dan 812 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cun 3909  cin 3910  c0 4292  {csn 4585   class class class wbr 5102  dom cdm 5631  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047  *cxr 11183   < clt 11184  cle 11185  cmin 11381  (,)cioo 13282  (,]cioc 13283  volcvol 25340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cmp 23250  df-ovol 25341  df-vol 25342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator