Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem32 Structured version   Visualization version   GIF version

Theorem fourierdlem32 46095
Description: Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem32.a (𝜑𝐴 ∈ ℝ)
fourierdlem32.b (𝜑𝐵 ∈ ℝ)
fourierdlem32.altb (𝜑𝐴 < 𝐵)
fourierdlem32.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem32.l (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem32.c (𝜑𝐶 ∈ ℝ)
fourierdlem32.d (𝜑𝐷 ∈ ℝ)
fourierdlem32.cltd (𝜑𝐶 < 𝐷)
fourierdlem32.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem32.y 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
fourierdlem32.j 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
Assertion
Ref Expression
fourierdlem32 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))

Proof of Theorem fourierdlem32
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem32.l . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
21adantr 480 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 ∈ (𝐹 lim 𝐴))
3 fourierdlem32.y . . . . 5 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
4 iftrue 4537 . . . . 5 (𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = 𝑅)
53, 4eqtr2id 2788 . . . 4 (𝐶 = 𝐴𝑅 = 𝑌)
65adantl 481 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 = 𝑌)
7 oveq2 7439 . . . . 5 (𝐶 = 𝐴 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
87adantl 481 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
9 fourierdlem32.f . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 24933 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 480 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem32.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 480 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 13446 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2735 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2735 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))
19 fourierdlem32.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
2019leidd 11827 . . . . . . . . 9 (𝜑𝐶𝐶)
21 fourierdlem32.cltd . . . . . . . . 9 (𝜑𝐶 < 𝐷)
22 fourierdlem32.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
2322rexrd 11309 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
24 elico2 13448 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2519, 23, 24syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2619, 20, 21, 25mpbir3and 1341 . . . . . . . 8 (𝜑𝐶 ∈ (𝐶[,)𝐷))
2726adantr 480 . . . . . . 7 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ (𝐶[,)𝐷))
28 fourierdlem32.j . . . . . . . . 9 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
2917cnfldtop 24820 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
30 ovex 7464 . . . . . . . . . . 11 (𝐴[,)𝐵) ∈ V
3130a1i 11 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐵) ∈ V)
32 resttop 23184 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3329, 31, 32sylancr 587 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3428, 33eqeltrid 2843 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → 𝐽 ∈ Top)
35 mnfxr 11316 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ ∈ ℝ*)
3723adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ*)
38 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐷))
39 fourierdlem32.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
4039adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴 ∈ ℝ)
41 elico2 13448 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4240, 37, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4338, 42mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷))
4443simp1d 1141 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ℝ)
4544mnfltd 13164 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ < 𝑥)
4643simp3d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐷)
4736, 37, 44, 45, 46eliood 45451 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (-∞(,)𝐷))
4843simp2d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴𝑥)
4922adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ)
50 fourierdlem32.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
5150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ)
5239, 50, 19, 22, 21, 13fourierdlem10 46073 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐶𝐷𝐵))
5352simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑𝐷𝐵)
5453adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷𝐵)
5544, 49, 51, 46, 54ltletrd 11419 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐵)
5650rexrd 11309 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ*)
58 elico2 13448 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
5940, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
6044, 48, 55, 59mpbir3and 1341 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐵))
6147, 60elind 4210 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
62 elinel1 4211 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐷))
63 elioore 13414 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-∞(,)𝐷) → 𝑥 ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
6564adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ)
66 elinel2 4212 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
6766adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
6839adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ)
6956adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
7068, 69, 58syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
7167, 70mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
7271simp2d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
7362adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐷))
7423adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐷 ∈ ℝ*)
75 elioo2 13425 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝐷 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7635, 74, 75sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7773, 76mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷))
7877simp3d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐷)
7968, 74, 41syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
8065, 72, 78, 79mpbir3and 1341 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐷))
8161, 80impbida 801 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,)𝐷) ↔ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))))
8281eqrdv 2733 . . . . . . . . . . 11 (𝜑 → (𝐴[,)𝐷) = ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
83 retop 24798 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → (topGen‘ran (,)) ∈ Top)
8530a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ∈ V)
86 iooretop 24802 . . . . . . . . . . . . 13 (-∞(,)𝐷) ∈ (topGen‘ran (,))
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝐷) ∈ (topGen‘ran (,)))
88 elrestr 17475 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐷) ∈ (topGen‘ran (,))) → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
8984, 85, 87, 88syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9082, 89eqeltrd 2839 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9190adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
92 simpr 484 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → 𝐶 = 𝐴)
9392oveq1d 7446 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) = (𝐴[,)𝐷))
9428a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
9529a1i 11 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
96 icossre 13465 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
9739, 56, 96syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
98 reex 11244 . . . . . . . . . . . . 13 ℝ ∈ V
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
100 restabs 23189 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10195, 97, 99, 100syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10217tgioo2 24839 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
103102eqcomi 2744 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
104103oveq1i 7441 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵))
105104a1i 11 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10694, 101, 1053eqtr2d 2781 . . . . . . . . . 10 (𝜑𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
107106adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10891, 93, 1073eltr4d 2854 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) ∈ 𝐽)
109 isopn3i 23106 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶[,)𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11034, 108, 109syl2anc 584 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11127, 110eleqtrrd 2842 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ ((int‘𝐽)‘(𝐶[,)𝐷)))
112 id 22 . . . . . . . 8 (𝐶 = 𝐴𝐶 = 𝐴)
113112eqcomd 2741 . . . . . . 7 (𝐶 = 𝐴𝐴 = 𝐶)
114113adantl 481 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐴 = 𝐶)
115 uncom 4168 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
11639rexrd 11309 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
117 fourierdlem32.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
118 snunioo 13515 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
119116, 56, 117, 118syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
120115, 119eqtrid 2787 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
121120adantr 480 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
122121oveq2d 7447 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
123122, 28eqtr4di 2793 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = 𝐽)
124123fveq2d 6911 . . . . . . 7 ((𝜑𝐶 = 𝐴) → (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))) = (int‘𝐽))
125 uncom 4168 . . . . . . . . 9 ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐴} ∪ (𝐶(,)𝐷))
126 sneq 4641 . . . . . . . . . . 11 (𝐶 = 𝐴 → {𝐶} = {𝐴})
127126eqcomd 2741 . . . . . . . . . 10 (𝐶 = 𝐴 → {𝐴} = {𝐶})
128127uneq1d 4177 . . . . . . . . 9 (𝐶 = 𝐴 → ({𝐴} ∪ (𝐶(,)𝐷)) = ({𝐶} ∪ (𝐶(,)𝐷)))
129125, 128eqtrid 2787 . . . . . . . 8 (𝐶 = 𝐴 → ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐶} ∪ (𝐶(,)𝐷)))
13019rexrd 11309 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
131 snunioo 13515 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
132130, 23, 21, 131syl3anc 1370 . . . . . . . 8 (𝜑 → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
133129, 132sylan9eqr 2797 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((𝐶(,)𝐷) ∪ {𝐴}) = (𝐶[,)𝐷))
134124, 133fveq12d 6914 . . . . . 6 ((𝜑𝐶 = 𝐴) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})) = ((int‘𝐽)‘(𝐶[,)𝐷)))
135111, 114, 1343eltr4d 2854 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})))
13612, 14, 16, 17, 18, 135limcres 25936 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴) = (𝐹 lim 𝐴))
1378, 136eqtr2d 2776 . . 3 ((𝜑𝐶 = 𝐴) → (𝐹 lim 𝐴) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
1382, 6, 1373eltr3d 2853 . 2 ((𝜑𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
139 limcresi 25935 . . 3 (𝐹 lim 𝐶) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶)
140 iffalse 4540 . . . . . 6 𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = (𝐹𝐶))
1413, 140eqtrid 2787 . . . . 5 𝐶 = 𝐴𝑌 = (𝐹𝐶))
142141adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 = (𝐹𝐶))
143 ssid 4018 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
145 eqid 2735 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
146 unicntop 24822 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
147146restid 17480 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14829, 147ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
149148eqcomi 2744 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
15017, 145, 149cncfcn 24950 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15115, 144, 150sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1529, 151eleqtrd 2841 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15317cnfldtopon 24819 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
154 resttopon 23185 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
155153, 15, 154mp2an 692 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
156 cncnp 23304 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
157155, 153, 156mp2an 692 . . . . . . . . . 10 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
158152, 157sylib 218 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
159158simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
160159adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
161116adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
16256adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
16319adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ ℝ)
16439adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ)
16552simpld 494 . . . . . . . . . 10 (𝜑𝐴𝐶)
166165adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
167112eqcoms 2743 . . . . . . . . . . . 12 (𝐴 = 𝐶𝐶 = 𝐴)
168167necon3bi 2965 . . . . . . . . . . 11 𝐶 = 𝐴𝐴𝐶)
169168adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
170169necomd 2994 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶𝐴)
171164, 163, 166, 170leneltd 11413 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 < 𝐶)
17219, 22, 50, 21, 53ltletrd 11419 . . . . . . . . 9 (𝜑𝐶 < 𝐵)
173172adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 < 𝐵)
174161, 162, 163, 171, 173eliood 45451 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴(,)𝐵))
175 fveq2 6907 . . . . . . . . 9 (𝑥 = 𝐶 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
176175eleq2d 2825 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶)))
177176rspccva 3621 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
178160, 174, 177syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
17917, 145cnplimc 25937 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐶 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
18015, 174, 179sylancr 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
181178, 180mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶)))
182181simprd 495 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹𝐶) ∈ (𝐹 lim 𝐶))
183142, 182eqeltrd 2839 . . 3 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ (𝐹 lim 𝐶))
184139, 183sselid 3993 . 2 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
185138, 184pm2.61dan 813 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cun 3961  cin 3962  wss 3963  ifcif 4531  {csn 4631   class class class wbr 5148  ran crn 5690  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  (,)cioo 13384  [,)cico 13386  t crest 17467  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382  Topctop 22915  TopOnctopon 22932  intcnt 23041   Cn ccn 23248   CnP ccnp 23249  cnccncf 24916   lim climc 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-ntr 23044  df-cn 23251  df-cnp 23252  df-xms 24346  df-ms 24347  df-cncf 24918  df-limc 25916
This theorem is referenced by:  fourierdlem48  46110  fourierdlem76  46138  fourierdlem89  46151
  Copyright terms: Public domain W3C validator