Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem32 Structured version   Visualization version   GIF version

Theorem fourierdlem32 41988
Description: Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem32.a (𝜑𝐴 ∈ ℝ)
fourierdlem32.b (𝜑𝐵 ∈ ℝ)
fourierdlem32.altb (𝜑𝐴 < 𝐵)
fourierdlem32.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem32.l (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem32.c (𝜑𝐶 ∈ ℝ)
fourierdlem32.d (𝜑𝐷 ∈ ℝ)
fourierdlem32.cltd (𝜑𝐶 < 𝐷)
fourierdlem32.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem32.y 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
fourierdlem32.j 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
Assertion
Ref Expression
fourierdlem32 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))

Proof of Theorem fourierdlem32
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem32.l . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
21adantr 481 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 ∈ (𝐹 lim 𝐴))
3 fourierdlem32.y . . . . 5 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
4 iftrue 4393 . . . . 5 (𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = 𝑅)
53, 4syl5req 2846 . . . 4 (𝐶 = 𝐴𝑅 = 𝑌)
65adantl 482 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 = 𝑌)
7 oveq2 7031 . . . . 5 (𝐶 = 𝐴 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
87adantl 482 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
9 fourierdlem32.f . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 23188 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 481 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem32.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 481 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 41332 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2797 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2797 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))
19 fourierdlem32.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
2019leidd 11060 . . . . . . . . 9 (𝜑𝐶𝐶)
21 fourierdlem32.cltd . . . . . . . . 9 (𝜑𝐶 < 𝐷)
22 fourierdlem32.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
2322rexrd 10544 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
24 elico2 12654 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2519, 23, 24syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2619, 20, 21, 25mpbir3and 1335 . . . . . . . 8 (𝜑𝐶 ∈ (𝐶[,)𝐷))
2726adantr 481 . . . . . . 7 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ (𝐶[,)𝐷))
28 fourierdlem32.j . . . . . . . . 9 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
2917cnfldtop 23079 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
30 ovex 7055 . . . . . . . . . . 11 (𝐴[,)𝐵) ∈ V
3130a1i 11 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐵) ∈ V)
32 resttop 21456 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3329, 31, 32sylancr 587 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3428, 33syl5eqel 2889 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → 𝐽 ∈ Top)
35 mnfxr 10551 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ ∈ ℝ*)
3723adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ*)
38 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐷))
39 fourierdlem32.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
4039adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴 ∈ ℝ)
41 elico2 12654 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4240, 37, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4338, 42mpbid 233 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷))
4443simp1d 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ℝ)
4544mnfltd 12373 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ < 𝑥)
4643simp3d 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐷)
4736, 37, 44, 45, 46eliood 41336 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (-∞(,)𝐷))
4843simp2d 1136 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴𝑥)
4922adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ)
50 fourierdlem32.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
5150adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ)
5239, 50, 19, 22, 21, 13fourierdlem10 41966 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐶𝐷𝐵))
5352simprd 496 . . . . . . . . . . . . . . . . 17 (𝜑𝐷𝐵)
5453adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷𝐵)
5544, 49, 51, 46, 54ltletrd 10653 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐵)
5650rexrd 10544 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
5756adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ*)
58 elico2 12654 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
5940, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
6044, 48, 55, 59mpbir3and 1335 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐵))
6147, 60elind 4098 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
62 elinel1 4099 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐷))
63 elioore 12622 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-∞(,)𝐷) → 𝑥 ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
6564adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ)
66 elinel2 4100 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
6766adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
6839adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ)
6956adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
7068, 69, 58syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
7167, 70mpbid 233 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
7271simp2d 1136 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
7362adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐷))
7423adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐷 ∈ ℝ*)
75 elioo2 12633 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝐷 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7635, 74, 75sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7773, 76mpbid 233 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷))
7877simp3d 1137 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐷)
7968, 74, 41syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
8065, 72, 78, 79mpbir3and 1335 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐷))
8161, 80impbida 797 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,)𝐷) ↔ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))))
8281eqrdv 2795 . . . . . . . . . . 11 (𝜑 → (𝐴[,)𝐷) = ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
83 retop 23057 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → (topGen‘ran (,)) ∈ Top)
8530a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ∈ V)
86 iooretop 23061 . . . . . . . . . . . . 13 (-∞(,)𝐷) ∈ (topGen‘ran (,))
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝐷) ∈ (topGen‘ran (,)))
88 elrestr 16535 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐷) ∈ (topGen‘ran (,))) → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
8984, 85, 87, 88syl3anc 1364 . . . . . . . . . . 11 (𝜑 → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9082, 89eqeltrd 2885 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9190adantr 481 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
92 simpr 485 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → 𝐶 = 𝐴)
9392oveq1d 7038 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) = (𝐴[,)𝐷))
9428a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
9529a1i 11 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
96 icossre 12671 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
9739, 56, 96syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
98 reex 10481 . . . . . . . . . . . . 13 ℝ ∈ V
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
100 restabs 21461 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10195, 97, 99, 100syl3anc 1364 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10217tgioo2 23098 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
103102eqcomi 2806 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
104103oveq1i 7033 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵))
105104a1i 11 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10694, 101, 1053eqtr2d 2839 . . . . . . . . . 10 (𝜑𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
107106adantr 481 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10891, 93, 1073eltr4d 2900 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) ∈ 𝐽)
109 isopn3i 21378 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶[,)𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11034, 108, 109syl2anc 584 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11127, 110eleqtrrd 2888 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ ((int‘𝐽)‘(𝐶[,)𝐷)))
112 id 22 . . . . . . . 8 (𝐶 = 𝐴𝐶 = 𝐴)
113112eqcomd 2803 . . . . . . 7 (𝐶 = 𝐴𝐴 = 𝐶)
114113adantl 482 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐴 = 𝐶)
115 uncom 4056 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
11639rexrd 10544 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
117 fourierdlem32.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
118 snunioo 12718 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
119116, 56, 117, 118syl3anc 1364 . . . . . . . . . . . 12 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
120115, 119syl5eq 2845 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
121120adantr 481 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
122121oveq2d 7039 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
123122, 28syl6eqr 2851 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = 𝐽)
124123fveq2d 6549 . . . . . . 7 ((𝜑𝐶 = 𝐴) → (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))) = (int‘𝐽))
125 uncom 4056 . . . . . . . . 9 ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐴} ∪ (𝐶(,)𝐷))
126 sneq 4488 . . . . . . . . . . 11 (𝐶 = 𝐴 → {𝐶} = {𝐴})
127126eqcomd 2803 . . . . . . . . . 10 (𝐶 = 𝐴 → {𝐴} = {𝐶})
128127uneq1d 4065 . . . . . . . . 9 (𝐶 = 𝐴 → ({𝐴} ∪ (𝐶(,)𝐷)) = ({𝐶} ∪ (𝐶(,)𝐷)))
129125, 128syl5eq 2845 . . . . . . . 8 (𝐶 = 𝐴 → ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐶} ∪ (𝐶(,)𝐷)))
13019rexrd 10544 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
131 snunioo 12718 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
132130, 23, 21, 131syl3anc 1364 . . . . . . . 8 (𝜑 → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
133129, 132sylan9eqr 2855 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((𝐶(,)𝐷) ∪ {𝐴}) = (𝐶[,)𝐷))
134124, 133fveq12d 6552 . . . . . 6 ((𝜑𝐶 = 𝐴) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})) = ((int‘𝐽)‘(𝐶[,)𝐷)))
135111, 114, 1343eltr4d 2900 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})))
13612, 14, 16, 17, 18, 135limcres 24171 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴) = (𝐹 lim 𝐴))
1378, 136eqtr2d 2834 . . 3 ((𝜑𝐶 = 𝐴) → (𝐹 lim 𝐴) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
1382, 6, 1373eltr3d 2899 . 2 ((𝜑𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
139 limcresi 24170 . . 3 (𝐹 lim 𝐶) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶)
140 iffalse 4396 . . . . . 6 𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = (𝐹𝐶))
1413, 140syl5eq 2845 . . . . 5 𝐶 = 𝐴𝑌 = (𝐹𝐶))
142141adantl 482 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 = (𝐹𝐶))
143 ssid 3916 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
145 eqid 2797 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
146 unicntop 23081 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
147146restid 16540 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14829, 147ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
149148eqcomi 2806 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
15017, 145, 149cncfcn 23204 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15115, 144, 150sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1529, 151eleqtrd 2887 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15317cnfldtopon 23078 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
154 resttopon 21457 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
155153, 15, 154mp2an 688 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
156 cncnp 21576 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
157155, 153, 156mp2an 688 . . . . . . . . . 10 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
158152, 157sylib 219 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
159158simprd 496 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
160159adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
161116adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
16256adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
16319adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ ℝ)
16439adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ)
16552simpld 495 . . . . . . . . . 10 (𝜑𝐴𝐶)
166165adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
167112eqcoms 2805 . . . . . . . . . . . 12 (𝐴 = 𝐶𝐶 = 𝐴)
168167necon3bi 3012 . . . . . . . . . . 11 𝐶 = 𝐴𝐴𝐶)
169168adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
170169necomd 3041 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶𝐴)
171164, 163, 166, 170leneltd 10647 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 < 𝐶)
17219, 22, 50, 21, 53ltletrd 10653 . . . . . . . . 9 (𝜑𝐶 < 𝐵)
173172adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 < 𝐵)
174161, 162, 163, 171, 173eliood 41336 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴(,)𝐵))
175 fveq2 6545 . . . . . . . . 9 (𝑥 = 𝐶 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
176175eleq2d 2870 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶)))
177176rspccva 3560 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
178160, 174, 177syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
17917, 145cnplimc 24172 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐶 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
18015, 174, 179sylancr 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
181178, 180mpbid 233 . . . . 5 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶)))
182181simprd 496 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹𝐶) ∈ (𝐹 lim 𝐶))
183142, 182eqeltrd 2885 . . 3 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ (𝐹 lim 𝐶))
184139, 183sseldi 3893 . 2 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
185138, 184pm2.61dan 809 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  wral 3107  Vcvv 3440  cun 3863  cin 3864  wss 3865  ifcif 4387  {csn 4478   class class class wbr 4968  ran crn 5451  cres 5452  wf 6228  cfv 6232  (class class class)co 7023  cc 10388  cr 10389  -∞cmnf 10526  *cxr 10527   < clt 10528  cle 10529  (,)cioo 12592  [,)cico 12594  t crest 16527  TopOpenctopn 16528  topGenctg 16544  fldccnfld 20231  Topctop 21189  TopOnctopon 21206  intcnt 21313   Cn ccn 21520   CnP ccnp 21521  cnccncf 23171   lim climc 24147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fi 8728  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ico 12598  df-icc 12599  df-fz 12747  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-plusg 16411  df-mulr 16412  df-starv 16413  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-rest 16529  df-topn 16530  df-topgen 16550  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-ntr 21316  df-cn 21523  df-cnp 21524  df-xms 22617  df-ms 22618  df-cncf 23173  df-limc 24151
This theorem is referenced by:  fourierdlem48  42003  fourierdlem76  42031  fourierdlem89  42044
  Copyright terms: Public domain W3C validator