Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem32 Structured version   Visualization version   GIF version

Theorem fourierdlem32 43917
Description: Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem32.a (𝜑𝐴 ∈ ℝ)
fourierdlem32.b (𝜑𝐵 ∈ ℝ)
fourierdlem32.altb (𝜑𝐴 < 𝐵)
fourierdlem32.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem32.l (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem32.c (𝜑𝐶 ∈ ℝ)
fourierdlem32.d (𝜑𝐷 ∈ ℝ)
fourierdlem32.cltd (𝜑𝐶 < 𝐷)
fourierdlem32.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem32.y 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
fourierdlem32.j 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
Assertion
Ref Expression
fourierdlem32 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))

Proof of Theorem fourierdlem32
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem32.l . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
21adantr 481 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 ∈ (𝐹 lim 𝐴))
3 fourierdlem32.y . . . . 5 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
4 iftrue 4477 . . . . 5 (𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = 𝑅)
53, 4eqtr2id 2790 . . . 4 (𝐶 = 𝐴𝑅 = 𝑌)
65adantl 482 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 = 𝑌)
7 oveq2 7323 . . . . 5 (𝐶 = 𝐴 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
87adantl 482 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
9 fourierdlem32.f . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 24128 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 481 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem32.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 481 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 13214 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2737 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2737 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))
19 fourierdlem32.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
2019leidd 11614 . . . . . . . . 9 (𝜑𝐶𝐶)
21 fourierdlem32.cltd . . . . . . . . 9 (𝜑𝐶 < 𝐷)
22 fourierdlem32.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
2322rexrd 11098 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
24 elico2 13216 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2519, 23, 24syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2619, 20, 21, 25mpbir3and 1341 . . . . . . . 8 (𝜑𝐶 ∈ (𝐶[,)𝐷))
2726adantr 481 . . . . . . 7 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ (𝐶[,)𝐷))
28 fourierdlem32.j . . . . . . . . 9 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
2917cnfldtop 24019 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
30 ovex 7348 . . . . . . . . . . 11 (𝐴[,)𝐵) ∈ V
3130a1i 11 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐵) ∈ V)
32 resttop 22383 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3329, 31, 32sylancr 587 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3428, 33eqeltrid 2842 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → 𝐽 ∈ Top)
35 mnfxr 11105 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ ∈ ℝ*)
3723adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ*)
38 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐷))
39 fourierdlem32.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
4039adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴 ∈ ℝ)
41 elico2 13216 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4240, 37, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4338, 42mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷))
4443simp1d 1141 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ℝ)
4544mnfltd 12933 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ < 𝑥)
4643simp3d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐷)
4736, 37, 44, 45, 46eliood 43273 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (-∞(,)𝐷))
4843simp2d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴𝑥)
4922adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ)
50 fourierdlem32.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
5150adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ)
5239, 50, 19, 22, 21, 13fourierdlem10 43895 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐶𝐷𝐵))
5352simprd 496 . . . . . . . . . . . . . . . . 17 (𝜑𝐷𝐵)
5453adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷𝐵)
5544, 49, 51, 46, 54ltletrd 11208 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐵)
5650rexrd 11098 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
5756adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ*)
58 elico2 13216 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
5940, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
6044, 48, 55, 59mpbir3and 1341 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐵))
6147, 60elind 4139 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
62 elinel1 4140 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐷))
63 elioore 13182 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-∞(,)𝐷) → 𝑥 ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
6564adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ)
66 elinel2 4141 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
6766adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
6839adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ)
6956adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
7068, 69, 58syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
7167, 70mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
7271simp2d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
7362adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐷))
7423adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐷 ∈ ℝ*)
75 elioo2 13193 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝐷 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7635, 74, 75sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7773, 76mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷))
7877simp3d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐷)
7968, 74, 41syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
8065, 72, 78, 79mpbir3and 1341 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐷))
8161, 80impbida 798 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,)𝐷) ↔ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))))
8281eqrdv 2735 . . . . . . . . . . 11 (𝜑 → (𝐴[,)𝐷) = ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
83 retop 23997 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → (topGen‘ran (,)) ∈ Top)
8530a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ∈ V)
86 iooretop 24001 . . . . . . . . . . . . 13 (-∞(,)𝐷) ∈ (topGen‘ran (,))
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝐷) ∈ (topGen‘ran (,)))
88 elrestr 17209 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐷) ∈ (topGen‘ran (,))) → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
8984, 85, 87, 88syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9082, 89eqeltrd 2838 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9190adantr 481 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
92 simpr 485 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → 𝐶 = 𝐴)
9392oveq1d 7330 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) = (𝐴[,)𝐷))
9428a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
9529a1i 11 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
96 icossre 13233 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
9739, 56, 96syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
98 reex 11035 . . . . . . . . . . . . 13 ℝ ∈ V
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
100 restabs 22388 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10195, 97, 99, 100syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10217tgioo2 24038 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
103102eqcomi 2746 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
104103oveq1i 7325 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵))
105104a1i 11 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10694, 101, 1053eqtr2d 2783 . . . . . . . . . 10 (𝜑𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
107106adantr 481 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10891, 93, 1073eltr4d 2853 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) ∈ 𝐽)
109 isopn3i 22305 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶[,)𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11034, 108, 109syl2anc 584 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11127, 110eleqtrrd 2841 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ ((int‘𝐽)‘(𝐶[,)𝐷)))
112 id 22 . . . . . . . 8 (𝐶 = 𝐴𝐶 = 𝐴)
113112eqcomd 2743 . . . . . . 7 (𝐶 = 𝐴𝐴 = 𝐶)
114113adantl 482 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐴 = 𝐶)
115 uncom 4098 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
11639rexrd 11098 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
117 fourierdlem32.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
118 snunioo 13283 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
119116, 56, 117, 118syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
120115, 119eqtrid 2789 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
121120adantr 481 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
122121oveq2d 7331 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
123122, 28eqtr4di 2795 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = 𝐽)
124123fveq2d 6815 . . . . . . 7 ((𝜑𝐶 = 𝐴) → (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))) = (int‘𝐽))
125 uncom 4098 . . . . . . . . 9 ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐴} ∪ (𝐶(,)𝐷))
126 sneq 4581 . . . . . . . . . . 11 (𝐶 = 𝐴 → {𝐶} = {𝐴})
127126eqcomd 2743 . . . . . . . . . 10 (𝐶 = 𝐴 → {𝐴} = {𝐶})
128127uneq1d 4107 . . . . . . . . 9 (𝐶 = 𝐴 → ({𝐴} ∪ (𝐶(,)𝐷)) = ({𝐶} ∪ (𝐶(,)𝐷)))
129125, 128eqtrid 2789 . . . . . . . 8 (𝐶 = 𝐴 → ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐶} ∪ (𝐶(,)𝐷)))
13019rexrd 11098 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
131 snunioo 13283 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
132130, 23, 21, 131syl3anc 1370 . . . . . . . 8 (𝜑 → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
133129, 132sylan9eqr 2799 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((𝐶(,)𝐷) ∪ {𝐴}) = (𝐶[,)𝐷))
134124, 133fveq12d 6818 . . . . . 6 ((𝜑𝐶 = 𝐴) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})) = ((int‘𝐽)‘(𝐶[,)𝐷)))
135111, 114, 1343eltr4d 2853 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})))
13612, 14, 16, 17, 18, 135limcres 25122 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴) = (𝐹 lim 𝐴))
1378, 136eqtr2d 2778 . . 3 ((𝜑𝐶 = 𝐴) → (𝐹 lim 𝐴) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
1382, 6, 1373eltr3d 2852 . 2 ((𝜑𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
139 limcresi 25121 . . 3 (𝐹 lim 𝐶) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶)
140 iffalse 4480 . . . . . 6 𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = (𝐹𝐶))
1413, 140eqtrid 2789 . . . . 5 𝐶 = 𝐴𝑌 = (𝐹𝐶))
142141adantl 482 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 = (𝐹𝐶))
143 ssid 3953 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
145 eqid 2737 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
146 unicntop 24021 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
147146restid 17214 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14829, 147ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
149148eqcomi 2746 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
15017, 145, 149cncfcn 24145 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15115, 144, 150sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1529, 151eleqtrd 2840 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15317cnfldtopon 24018 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
154 resttopon 22384 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
155153, 15, 154mp2an 689 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
156 cncnp 22503 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
157155, 153, 156mp2an 689 . . . . . . . . . 10 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
158152, 157sylib 217 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
159158simprd 496 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
160159adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
161116adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
16256adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
16319adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ ℝ)
16439adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ)
16552simpld 495 . . . . . . . . . 10 (𝜑𝐴𝐶)
166165adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
167112eqcoms 2745 . . . . . . . . . . . 12 (𝐴 = 𝐶𝐶 = 𝐴)
168167necon3bi 2968 . . . . . . . . . . 11 𝐶 = 𝐴𝐴𝐶)
169168adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
170169necomd 2997 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶𝐴)
171164, 163, 166, 170leneltd 11202 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 < 𝐶)
17219, 22, 50, 21, 53ltletrd 11208 . . . . . . . . 9 (𝜑𝐶 < 𝐵)
173172adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 < 𝐵)
174161, 162, 163, 171, 173eliood 43273 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴(,)𝐵))
175 fveq2 6811 . . . . . . . . 9 (𝑥 = 𝐶 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
176175eleq2d 2823 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶)))
177176rspccva 3569 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
178160, 174, 177syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
17917, 145cnplimc 25123 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐶 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
18015, 174, 179sylancr 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
181178, 180mpbid 231 . . . . 5 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶)))
182181simprd 496 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹𝐶) ∈ (𝐹 lim 𝐶))
183142, 182eqeltrd 2838 . . 3 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ (𝐹 lim 𝐶))
184139, 183sselid 3929 . 2 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
185138, 184pm2.61dan 810 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wral 3062  Vcvv 3441  cun 3895  cin 3896  wss 3897  ifcif 4471  {csn 4571   class class class wbr 5087  ran crn 5608  cres 5609  wf 6461  cfv 6465  (class class class)co 7315  cc 10942  cr 10943  -∞cmnf 11080  *cxr 11081   < clt 11082  cle 11083  (,)cioo 13152  [,)cico 13154  t crest 17201  TopOpenctopn 17202  topGenctg 17218  fldccnfld 20669  Topctop 22114  TopOnctopon 22131  intcnt 22240   Cn ccn 22447   CnP ccnp 22448  cnccncf 24111   lim climc 25098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021  ax-pre-sup 11022
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-er 8546  df-map 8665  df-pm 8666  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-fi 9240  df-sup 9271  df-inf 9272  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-div 11706  df-nn 12047  df-2 12109  df-3 12110  df-4 12111  df-5 12112  df-6 12113  df-7 12114  df-8 12115  df-9 12116  df-n0 12307  df-z 12393  df-dec 12511  df-uz 12656  df-q 12762  df-rp 12804  df-xneg 12921  df-xadd 12922  df-xmul 12923  df-ioo 13156  df-ico 13158  df-icc 13159  df-fz 13313  df-seq 13795  df-exp 13856  df-cj 14882  df-re 14883  df-im 14884  df-sqrt 15018  df-abs 15019  df-struct 16918  df-slot 16953  df-ndx 16965  df-base 16983  df-plusg 17045  df-mulr 17046  df-starv 17047  df-tset 17051  df-ple 17052  df-ds 17054  df-unif 17055  df-rest 17203  df-topn 17204  df-topgen 17224  df-psmet 20661  df-xmet 20662  df-met 20663  df-bl 20664  df-mopn 20665  df-cnfld 20670  df-top 22115  df-topon 22132  df-topsp 22154  df-bases 22168  df-ntr 22243  df-cn 22450  df-cnp 22451  df-xms 23545  df-ms 23546  df-cncf 24113  df-limc 25102
This theorem is referenced by:  fourierdlem48  43932  fourierdlem76  43960  fourierdlem89  43973
  Copyright terms: Public domain W3C validator