Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem32 Structured version   Visualization version   GIF version

Theorem fourierdlem32 46110
Description: Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem32.a (𝜑𝐴 ∈ ℝ)
fourierdlem32.b (𝜑𝐵 ∈ ℝ)
fourierdlem32.altb (𝜑𝐴 < 𝐵)
fourierdlem32.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem32.l (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem32.c (𝜑𝐶 ∈ ℝ)
fourierdlem32.d (𝜑𝐷 ∈ ℝ)
fourierdlem32.cltd (𝜑𝐶 < 𝐷)
fourierdlem32.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem32.y 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
fourierdlem32.j 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
Assertion
Ref Expression
fourierdlem32 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))

Proof of Theorem fourierdlem32
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem32.l . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
21adantr 480 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 ∈ (𝐹 lim 𝐴))
3 fourierdlem32.y . . . . 5 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
4 iftrue 4490 . . . . 5 (𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = 𝑅)
53, 4eqtr2id 2777 . . . 4 (𝐶 = 𝐴𝑅 = 𝑌)
65adantl 481 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 = 𝑌)
7 oveq2 7377 . . . . 5 (𝐶 = 𝐴 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
87adantl 481 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
9 fourierdlem32.f . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 24762 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 480 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem32.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 480 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 13345 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2729 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2729 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))
19 fourierdlem32.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
2019leidd 11720 . . . . . . . . 9 (𝜑𝐶𝐶)
21 fourierdlem32.cltd . . . . . . . . 9 (𝜑𝐶 < 𝐷)
22 fourierdlem32.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
2322rexrd 11200 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
24 elico2 13347 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2519, 23, 24syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2619, 20, 21, 25mpbir3and 1343 . . . . . . . 8 (𝜑𝐶 ∈ (𝐶[,)𝐷))
2726adantr 480 . . . . . . 7 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ (𝐶[,)𝐷))
28 fourierdlem32.j . . . . . . . . 9 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
2917cnfldtop 24647 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
30 ovex 7402 . . . . . . . . . . 11 (𝐴[,)𝐵) ∈ V
3130a1i 11 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐵) ∈ V)
32 resttop 23023 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3329, 31, 32sylancr 587 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3428, 33eqeltrid 2832 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → 𝐽 ∈ Top)
35 mnfxr 11207 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ ∈ ℝ*)
3723adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ*)
38 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐷))
39 fourierdlem32.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
4039adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴 ∈ ℝ)
41 elico2 13347 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4240, 37, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4338, 42mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷))
4443simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ℝ)
4544mnfltd 13060 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ < 𝑥)
4643simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐷)
4736, 37, 44, 45, 46eliood 45469 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (-∞(,)𝐷))
4843simp2d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴𝑥)
4922adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ)
50 fourierdlem32.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
5150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ)
5239, 50, 19, 22, 21, 13fourierdlem10 46088 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐶𝐷𝐵))
5352simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑𝐷𝐵)
5453adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷𝐵)
5544, 49, 51, 46, 54ltletrd 11310 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐵)
5650rexrd 11200 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ*)
58 elico2 13347 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
5940, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
6044, 48, 55, 59mpbir3and 1343 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐵))
6147, 60elind 4159 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
62 elinel1 4160 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐷))
63 elioore 13312 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-∞(,)𝐷) → 𝑥 ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
6564adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ)
66 elinel2 4161 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
6766adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
6839adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ)
6956adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
7068, 69, 58syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
7167, 70mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
7271simp2d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
7362adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐷))
7423adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐷 ∈ ℝ*)
75 elioo2 13323 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝐷 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7635, 74, 75sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7773, 76mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷))
7877simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐷)
7968, 74, 41syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
8065, 72, 78, 79mpbir3and 1343 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐷))
8161, 80impbida 800 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,)𝐷) ↔ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))))
8281eqrdv 2727 . . . . . . . . . . 11 (𝜑 → (𝐴[,)𝐷) = ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
83 retop 24625 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → (topGen‘ran (,)) ∈ Top)
8530a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ∈ V)
86 iooretop 24629 . . . . . . . . . . . . 13 (-∞(,)𝐷) ∈ (topGen‘ran (,))
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝐷) ∈ (topGen‘ran (,)))
88 elrestr 17367 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐷) ∈ (topGen‘ran (,))) → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
8984, 85, 87, 88syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9082, 89eqeltrd 2828 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9190adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
92 simpr 484 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → 𝐶 = 𝐴)
9392oveq1d 7384 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) = (𝐴[,)𝐷))
9428a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
9529a1i 11 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
96 icossre 13365 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
9739, 56, 96syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
98 reex 11135 . . . . . . . . . . . . 13 ℝ ∈ V
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
100 restabs 23028 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10195, 97, 99, 100syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
102 tgioo4 24669 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
103102eqcomi 2738 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
104103oveq1i 7379 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵))
105104a1i 11 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10694, 101, 1053eqtr2d 2770 . . . . . . . . . 10 (𝜑𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
107106adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10891, 93, 1073eltr4d 2843 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) ∈ 𝐽)
109 isopn3i 22945 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶[,)𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11034, 108, 109syl2anc 584 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11127, 110eleqtrrd 2831 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ ((int‘𝐽)‘(𝐶[,)𝐷)))
112 id 22 . . . . . . . 8 (𝐶 = 𝐴𝐶 = 𝐴)
113112eqcomd 2735 . . . . . . 7 (𝐶 = 𝐴𝐴 = 𝐶)
114113adantl 481 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐴 = 𝐶)
115 uncom 4117 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
11639rexrd 11200 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
117 fourierdlem32.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
118 snunioo 13415 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
119116, 56, 117, 118syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
120115, 119eqtrid 2776 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
121120adantr 480 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
122121oveq2d 7385 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
123122, 28eqtr4di 2782 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = 𝐽)
124123fveq2d 6844 . . . . . . 7 ((𝜑𝐶 = 𝐴) → (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))) = (int‘𝐽))
125 uncom 4117 . . . . . . . . 9 ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐴} ∪ (𝐶(,)𝐷))
126 sneq 4595 . . . . . . . . . . 11 (𝐶 = 𝐴 → {𝐶} = {𝐴})
127126eqcomd 2735 . . . . . . . . . 10 (𝐶 = 𝐴 → {𝐴} = {𝐶})
128127uneq1d 4126 . . . . . . . . 9 (𝐶 = 𝐴 → ({𝐴} ∪ (𝐶(,)𝐷)) = ({𝐶} ∪ (𝐶(,)𝐷)))
129125, 128eqtrid 2776 . . . . . . . 8 (𝐶 = 𝐴 → ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐶} ∪ (𝐶(,)𝐷)))
13019rexrd 11200 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
131 snunioo 13415 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
132130, 23, 21, 131syl3anc 1373 . . . . . . . 8 (𝜑 → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
133129, 132sylan9eqr 2786 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((𝐶(,)𝐷) ∪ {𝐴}) = (𝐶[,)𝐷))
134124, 133fveq12d 6847 . . . . . 6 ((𝜑𝐶 = 𝐴) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})) = ((int‘𝐽)‘(𝐶[,)𝐷)))
135111, 114, 1343eltr4d 2843 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})))
13612, 14, 16, 17, 18, 135limcres 25763 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴) = (𝐹 lim 𝐴))
1378, 136eqtr2d 2765 . . 3 ((𝜑𝐶 = 𝐴) → (𝐹 lim 𝐴) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
1382, 6, 1373eltr3d 2842 . 2 ((𝜑𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
139 limcresi 25762 . . 3 (𝐹 lim 𝐶) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶)
140 iffalse 4493 . . . . . 6 𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = (𝐹𝐶))
1413, 140eqtrid 2776 . . . . 5 𝐶 = 𝐴𝑌 = (𝐹𝐶))
142141adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 = (𝐹𝐶))
143 ssid 3966 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
145 eqid 2729 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
146 unicntop 24649 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
147146restid 17372 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14829, 147ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
149148eqcomi 2738 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
15017, 145, 149cncfcn 24779 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15115, 144, 150sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1529, 151eleqtrd 2830 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15317cnfldtopon 24646 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
154 resttopon 23024 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
155153, 15, 154mp2an 692 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
156 cncnp 23143 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
157155, 153, 156mp2an 692 . . . . . . . . . 10 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
158152, 157sylib 218 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
159158simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
160159adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
161116adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
16256adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
16319adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ ℝ)
16439adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ)
16552simpld 494 . . . . . . . . . 10 (𝜑𝐴𝐶)
166165adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
167112eqcoms 2737 . . . . . . . . . . . 12 (𝐴 = 𝐶𝐶 = 𝐴)
168167necon3bi 2951 . . . . . . . . . . 11 𝐶 = 𝐴𝐴𝐶)
169168adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
170169necomd 2980 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶𝐴)
171164, 163, 166, 170leneltd 11304 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 < 𝐶)
17219, 22, 50, 21, 53ltletrd 11310 . . . . . . . . 9 (𝜑𝐶 < 𝐵)
173172adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 < 𝐵)
174161, 162, 163, 171, 173eliood 45469 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴(,)𝐵))
175 fveq2 6840 . . . . . . . . 9 (𝑥 = 𝐶 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
176175eleq2d 2814 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶)))
177176rspccva 3584 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
178160, 174, 177syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
17917, 145cnplimc 25764 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐶 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
18015, 174, 179sylancr 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
181178, 180mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶)))
182181simprd 495 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹𝐶) ∈ (𝐹 lim 𝐶))
183142, 182eqeltrd 2828 . . 3 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ (𝐹 lim 𝐶))
184139, 183sselid 3941 . 2 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
185138, 184pm2.61dan 812 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cun 3909  cin 3910  wss 3911  ifcif 4484  {csn 4585   class class class wbr 5102  ran crn 5632  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  (,)cioo 13282  [,)cico 13284  t crest 17359  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  Topctop 22756  TopOnctopon 22773  intcnt 22880   Cn ccn 23087   CnP ccnp 23088  cnccncf 24745   lim climc 25739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-ntr 22883  df-cn 23090  df-cnp 23091  df-xms 24184  df-ms 24185  df-cncf 24747  df-limc 25743
This theorem is referenced by:  fourierdlem48  46125  fourierdlem76  46153  fourierdlem89  46166
  Copyright terms: Public domain W3C validator