| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem32.l |
. . . 4
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
| 3 | | fourierdlem32.y |
. . . . 5
⊢ 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹‘𝐶)) |
| 4 | | iftrue 4506 |
. . . . 5
⊢ (𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹‘𝐶)) = 𝑅) |
| 5 | 3, 4 | eqtr2id 2783 |
. . . 4
⊢ (𝐶 = 𝐴 → 𝑅 = 𝑌) |
| 6 | 5 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝑅 = 𝑌) |
| 7 | | oveq2 7413 |
. . . . 5
⊢ (𝐶 = 𝐴 → ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐴)) |
| 8 | 7 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐴)) |
| 9 | | fourierdlem32.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 10 | | cncff 24837 |
. . . . . . 7
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 13 | | fourierdlem32.ss |
. . . . . 6
⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 15 | | ioosscn 13425 |
. . . . . 6
⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 16 | 15 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐴(,)𝐵) ⊆ ℂ) |
| 17 | | eqid 2735 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 18 | | eqid 2735 |
. . . . 5
⊢
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld)
↾t ((𝐴(,)𝐵) ∪ {𝐴})) |
| 19 | | fourierdlem32.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 20 | 19 | leidd 11803 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ≤ 𝐶) |
| 21 | | fourierdlem32.cltd |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 < 𝐷) |
| 22 | | fourierdlem32.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 23 | 22 | rexrd 11285 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
| 24 | | elico2 13427 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ*)
→ (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐶 ∧ 𝐶 < 𝐷))) |
| 25 | 19, 23, 24 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐶 ∧ 𝐶 < 𝐷))) |
| 26 | 19, 20, 21, 25 | mpbir3and 1343 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (𝐶[,)𝐷)) |
| 27 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐶[,)𝐷)) |
| 28 | | fourierdlem32.j |
. . . . . . . . 9
⊢ 𝐽 =
((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) |
| 29 | 17 | cnfldtop 24722 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈ Top |
| 30 | | ovex 7438 |
. . . . . . . . . . 11
⊢ (𝐴[,)𝐵) ∈ V |
| 31 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐴[,)𝐵) ∈ V) |
| 32 | | resttop 23098 |
. . . . . . . . . 10
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ∈ V) →
((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top) |
| 33 | 29, 31, 32 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 = 𝐴) →
((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top) |
| 34 | 28, 33 | eqeltrid 2838 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐽 ∈ Top) |
| 35 | | mnfxr 11292 |
. . . . . . . . . . . . . . . 16
⊢ -∞
∈ ℝ* |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → -∞ ∈
ℝ*) |
| 37 | 23 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈
ℝ*) |
| 38 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐷)) |
| 39 | | fourierdlem32.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝐴 ∈ ℝ) |
| 41 | | elico2 13427 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ*)
→ (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷))) |
| 42 | 40, 37, 41 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷))) |
| 43 | 38, 42 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷)) |
| 44 | 43 | simp1d 1142 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ℝ) |
| 45 | 44 | mnfltd 13140 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → -∞ < 𝑥) |
| 46 | 43 | simp3d 1144 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐷) |
| 47 | 36, 37, 44, 45, 46 | eliood 45527 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (-∞(,)𝐷)) |
| 48 | 43 | simp2d 1143 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝐴 ≤ 𝑥) |
| 49 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ) |
| 50 | | fourierdlem32.b |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ) |
| 52 | 39, 50, 19, 22, 21, 13 | fourierdlem10 46146 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) |
| 53 | 52 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐷 ≤ 𝐵) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ≤ 𝐵) |
| 55 | 44, 49, 51, 46, 54 | ltletrd 11395 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐵) |
| 56 | 50 | rexrd 11285 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈
ℝ*) |
| 58 | | elico2 13427 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) |
| 59 | 40, 57, 58 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) |
| 60 | 44, 48, 55, 59 | mpbir3and 1343 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐵)) |
| 61 | 47, 60 | elind 4175 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) |
| 62 | | elinel1 4176 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐷)) |
| 63 | | elioore 13392 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (-∞(,)𝐷) → 𝑥 ∈ ℝ) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ) |
| 65 | 64 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ) |
| 66 | | elinel2 4177 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵)) |
| 67 | 66 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵)) |
| 68 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ) |
| 69 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐵 ∈
ℝ*) |
| 70 | 68, 69, 58 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) |
| 71 | 67, 70 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) |
| 72 | 71 | simp2d 1143 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴 ≤ 𝑥) |
| 73 | 62 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐷)) |
| 74 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐷 ∈
ℝ*) |
| 75 | | elioo2 13403 |
. . . . . . . . . . . . . . . . 17
⊢
((-∞ ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷))) |
| 76 | 35, 74, 75 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷))) |
| 77 | 73, 76 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷)) |
| 78 | 77 | simp3d 1144 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐷) |
| 79 | 68, 74, 41 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷))) |
| 80 | 65, 72, 78, 79 | mpbir3and 1343 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐷)) |
| 81 | 61, 80 | impbida 800 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝐴[,)𝐷) ↔ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))) |
| 82 | 81 | eqrdv 2733 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,)𝐷) = ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) |
| 83 | | retop 24700 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) ∈ Top |
| 84 | 83 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (topGen‘ran (,))
∈ Top) |
| 85 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴[,)𝐵) ∈ V) |
| 86 | | iooretop 24704 |
. . . . . . . . . . . . 13
⊢
(-∞(,)𝐷)
∈ (topGen‘ran (,)) |
| 87 | 86 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (-∞(,)𝐷) ∈ (topGen‘ran
(,))) |
| 88 | | elrestr 17442 |
. . . . . . . . . . . 12
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐷) ∈ (topGen‘ran (,)))
→ ((-∞(,)𝐷)
∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran
(,)) ↾t (𝐴[,)𝐵))) |
| 89 | 84, 85, 87, 88 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,))
↾t (𝐴[,)𝐵))) |
| 90 | 82, 89 | eqeltrd 2834 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,)𝐷) ∈ ((topGen‘ran (,))
↾t (𝐴[,)𝐵))) |
| 91 | 90 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐴[,)𝐷) ∈ ((topGen‘ran (,))
↾t (𝐴[,)𝐵))) |
| 92 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴) |
| 93 | 92 | oveq1d 7420 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐶[,)𝐷) = (𝐴[,)𝐷)) |
| 94 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 = ((TopOpen‘ℂfld)
↾t (𝐴[,)𝐵))) |
| 95 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈ Top) |
| 96 | | icossre 13445 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝐴[,)𝐵) ⊆
ℝ) |
| 97 | 39, 56, 96 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴[,)𝐵) ⊆ ℝ) |
| 98 | | reex 11220 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
| 99 | 98 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
| 100 | | restabs 23103 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℝ ∧ ℝ ∈ V)
→ (((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,)𝐵))) |
| 101 | 95, 97, 99, 100 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,)𝐵))) |
| 102 | | tgioo4 24744 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 103 | 102 | eqcomi 2744 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t ℝ) =
(topGen‘ran (,)) |
| 104 | 103 | oveq1i 7415 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐴[,)𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,)𝐵)) |
| 105 | 104 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐴[,)𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,)𝐵))) |
| 106 | 94, 101, 105 | 3eqtr2d 2776 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 = ((topGen‘ran (,))
↾t (𝐴[,)𝐵))) |
| 107 | 106 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐽 = ((topGen‘ran (,))
↾t (𝐴[,)𝐵))) |
| 108 | 91, 93, 107 | 3eltr4d 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐶[,)𝐷) ∈ 𝐽) |
| 109 | | isopn3i 23020 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝐶[,)𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷)) |
| 110 | 34, 108, 109 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷)) |
| 111 | 27, 110 | eleqtrrd 2837 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐶 ∈ ((int‘𝐽)‘(𝐶[,)𝐷))) |
| 112 | | id 22 |
. . . . . . . 8
⊢ (𝐶 = 𝐴 → 𝐶 = 𝐴) |
| 113 | 112 | eqcomd 2741 |
. . . . . . 7
⊢ (𝐶 = 𝐴 → 𝐴 = 𝐶) |
| 114 | 113 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐴 = 𝐶) |
| 115 | | uncom 4133 |
. . . . . . . . . . . 12
⊢ ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵)) |
| 116 | 39 | rexrd 11285 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 117 | | fourierdlem32.altb |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 < 𝐵) |
| 118 | | snunioo 13495 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 119 | 116, 56, 117, 118 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 120 | 115, 119 | eqtrid 2782 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| 121 | 120 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| 122 | 121 | oveq2d 7421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 = 𝐴) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld)
↾t (𝐴[,)𝐵))) |
| 123 | 122, 28 | eqtr4di 2788 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 = 𝐴) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = 𝐽) |
| 124 | 123 | fveq2d 6880 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 = 𝐴) →
(int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))) = (int‘𝐽)) |
| 125 | | uncom 4133 |
. . . . . . . . 9
⊢ ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐴} ∪ (𝐶(,)𝐷)) |
| 126 | | sneq 4611 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝐴 → {𝐶} = {𝐴}) |
| 127 | 126 | eqcomd 2741 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐴 → {𝐴} = {𝐶}) |
| 128 | 127 | uneq1d 4142 |
. . . . . . . . 9
⊢ (𝐶 = 𝐴 → ({𝐴} ∪ (𝐶(,)𝐷)) = ({𝐶} ∪ (𝐶(,)𝐷))) |
| 129 | 125, 128 | eqtrid 2782 |
. . . . . . . 8
⊢ (𝐶 = 𝐴 → ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐶} ∪ (𝐶(,)𝐷))) |
| 130 | 19 | rexrd 11285 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
| 131 | | snunioo 13495 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷) → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷)) |
| 132 | 130, 23, 21, 131 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷)) |
| 133 | 129, 132 | sylan9eqr 2792 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → ((𝐶(,)𝐷) ∪ {𝐴}) = (𝐶[,)𝐷)) |
| 134 | 124, 133 | fveq12d 6883 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 = 𝐴) →
((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})) = ((int‘𝐽)‘(𝐶[,)𝐷))) |
| 135 | 111, 114,
134 | 3eltr4d 2849 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐴 ∈
((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴}))) |
| 136 | 12, 14, 16, 17, 18, 135 | limcres 25839 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) |
| 137 | 8, 136 | eqtr2d 2771 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐹 limℂ 𝐴) = ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶)) |
| 138 | 2, 6, 137 | 3eltr3d 2848 |
. 2
⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶)) |
| 139 | | limcresi 25838 |
. . 3
⊢ (𝐹 limℂ 𝐶) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶) |
| 140 | | iffalse 4509 |
. . . . . 6
⊢ (¬
𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹‘𝐶)) = (𝐹‘𝐶)) |
| 141 | 3, 140 | eqtrid 2782 |
. . . . 5
⊢ (¬
𝐶 = 𝐴 → 𝑌 = (𝐹‘𝐶)) |
| 142 | 141 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 = (𝐹‘𝐶)) |
| 143 | | ssid 3981 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
| 144 | 143 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 145 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴(,)𝐵)) |
| 146 | | unicntop 24724 |
. . . . . . . . . . . . . . . 16
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 147 | 146 | restid 17447 |
. . . . . . . . . . . . . . 15
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
| 148 | 29, 147 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
| 149 | 148 | eqcomi 2744 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 150 | 17, 145, 149 | cncfcn 24854 |
. . . . . . . . . . . 12
⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((𝐴(,)𝐵)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn
(TopOpen‘ℂfld))) |
| 151 | 15, 144, 150 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn
(TopOpen‘ℂfld))) |
| 152 | 9, 151 | eleqtrd 2836 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn
(TopOpen‘ℂfld))) |
| 153 | 17 | cnfldtopon 24721 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 154 | | resttopon 23099 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (𝐴(,)𝐵) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
| 155 | 153, 15, 154 | mp2an 692 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) |
| 156 | | cncnp 23218 |
. . . . . . . . . . 11
⊢
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
(𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥)))) |
| 157 | 155, 153,
156 | mp2an 692 |
. . . . . . . . . 10
⊢ (𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥))) |
| 158 | 152, 157 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥))) |
| 159 | 158 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
| 160 | 159 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
| 161 | 116 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈
ℝ*) |
| 162 | 56 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐵 ∈
ℝ*) |
| 163 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ ℝ) |
| 164 | 39 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ) |
| 165 | 52 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| 166 | 165 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ≤ 𝐶) |
| 167 | 112 | eqcoms 2743 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐶 → 𝐶 = 𝐴) |
| 168 | 167 | necon3bi 2958 |
. . . . . . . . . . 11
⊢ (¬
𝐶 = 𝐴 → 𝐴 ≠ 𝐶) |
| 169 | 168 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ≠ 𝐶) |
| 170 | 169 | necomd 2987 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ≠ 𝐴) |
| 171 | 164, 163,
166, 170 | leneltd 11389 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 < 𝐶) |
| 172 | 19, 22, 50, 21, 53 | ltletrd 11395 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 < 𝐵) |
| 173 | 172 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 < 𝐵) |
| 174 | 161, 162,
163, 171, 173 | eliood 45527 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴(,)𝐵)) |
| 175 | | fveq2 6876 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 →
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld)
↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐶)) |
| 176 | 175 | eleq2d 2820 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐶))) |
| 177 | 176 | rspccva 3600 |
. . . . . . 7
⊢
((∀𝑥 ∈
(𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐶)) |
| 178 | 160, 174,
177 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐶)) |
| 179 | 17, 145 | cnplimc 25840 |
. . . . . . 7
⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐶 ∈ (𝐴(,)𝐵)) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹‘𝐶) ∈ (𝐹 limℂ 𝐶)))) |
| 180 | 15, 174, 179 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹‘𝐶) ∈ (𝐹 limℂ 𝐶)))) |
| 181 | 178, 180 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹‘𝐶) ∈ (𝐹 limℂ 𝐶))) |
| 182 | 181 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹‘𝐶) ∈ (𝐹 limℂ 𝐶)) |
| 183 | 142, 182 | eqeltrd 2834 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ (𝐹 limℂ 𝐶)) |
| 184 | 139, 183 | sselid 3956 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶)) |
| 185 | 138, 184 | pm2.61dan 812 |
1
⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶)) |