MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeq Structured version   Visualization version   GIF version

Theorem frgrncvvdeq 28094
Description: In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in [Huneke] p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrncvvdeq (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem frgrncvvdeq
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7170 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 NeighbVtx 𝑥) ∈ V)
2 frgrncvvdeq.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 eqid 2798 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
4 eqid 2798 . . . . . . 7 (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑥)
5 eqid 2798 . . . . . . 7 (𝐺 NeighbVtx 𝑦) = (𝐺 NeighbVtx 𝑦)
6 simpl 486 . . . . . . . 8 ((𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑥𝑉)
76ad2antlr 726 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑥𝑉)
8 eldifi 4054 . . . . . . . . 9 (𝑦 ∈ (𝑉 ∖ {𝑥}) → 𝑦𝑉)
98adantl 485 . . . . . . . 8 ((𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑦𝑉)
109ad2antlr 726 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑦𝑉)
11 eldif 3891 . . . . . . . . . 10 (𝑦 ∈ (𝑉 ∖ {𝑥}) ↔ (𝑦𝑉 ∧ ¬ 𝑦 ∈ {𝑥}))
12 velsn 4541 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
1312biimpri 231 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 ∈ {𝑥})
1413equcoms 2027 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 ∈ {𝑥})
1514necon3bi 3013 . . . . . . . . . 10 𝑦 ∈ {𝑥} → 𝑥𝑦)
1611, 15simplbiim 508 . . . . . . . . 9 (𝑦 ∈ (𝑉 ∖ {𝑥}) → 𝑥𝑦)
1716adantl 485 . . . . . . . 8 ((𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑥𝑦)
1817ad2antlr 726 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑥𝑦)
19 simpr 488 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑦 ∉ (𝐺 NeighbVtx 𝑥))
20 simpl 486 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → 𝐺 ∈ FriendGraph )
2120adantr 484 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝐺 ∈ FriendGraph )
22 eqid 2798 . . . . . . 7 (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺))) = (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺)))
232, 3, 4, 5, 7, 10, 18, 19, 21, 22frgrncvvdeqlem10 28093 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺))):(𝐺 NeighbVtx 𝑥)–1-1-onto→(𝐺 NeighbVtx 𝑦))
241, 23hasheqf1od 13710 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑥)) = (♯‘(𝐺 NeighbVtx 𝑦)))
25 frgrusgr 28046 . . . . . . . 8 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2625, 6anim12i 615 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝐺 ∈ USGraph ∧ 𝑥𝑉))
2726adantr 484 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 ∈ USGraph ∧ 𝑥𝑉))
282hashnbusgrvd 27318 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑥𝑉) → (♯‘(𝐺 NeighbVtx 𝑥)) = ((VtxDeg‘𝐺)‘𝑥))
2927, 28syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑥)) = ((VtxDeg‘𝐺)‘𝑥))
3025, 9anim12i 615 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝐺 ∈ USGraph ∧ 𝑦𝑉))
3130adantr 484 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 ∈ USGraph ∧ 𝑦𝑉))
322hashnbusgrvd 27318 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑦𝑉) → (♯‘(𝐺 NeighbVtx 𝑦)) = ((VtxDeg‘𝐺)‘𝑦))
3331, 32syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑦)) = ((VtxDeg‘𝐺)‘𝑦))
3424, 29, 333eqtr3d 2841 . . . 4 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘𝑦))
35 frgrncvvdeq.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
3635fveq1i 6646 . . . 4 (𝐷𝑥) = ((VtxDeg‘𝐺)‘𝑥)
3735fveq1i 6646 . . . 4 (𝐷𝑦) = ((VtxDeg‘𝐺)‘𝑦)
3834, 36, 373eqtr4g 2858 . . 3 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐷𝑥) = (𝐷𝑦))
3938ex 416 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
4039ralrimivva 3156 1 (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wnel 3091  wral 3106  Vcvv 3441  cdif 3878  {csn 4525  {cpr 4527  cmpt 5110  cfv 6324  crio 7092  (class class class)co 7135  chash 13686  Vtxcvtx 26789  Edgcedg 26840  USGraphcusgr 26942   NeighbVtx cnbgr 27122  VtxDegcvtxdg 27255   FriendGraph cfrgr 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-ushgr 26852  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-nbgr 27123  df-vtxdg 27256  df-frgr 28044
This theorem is referenced by:  frgrwopreglem4a  28095
  Copyright terms: Public domain W3C validator