Step | Hyp | Ref
| Expression |
1 | | ovexd 7290 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 NeighbVtx 𝑥) ∈ V) |
2 | | frgrncvvdeq.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
4 | | eqid 2738 |
. . . . . . 7
⊢ (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑥) |
5 | | eqid 2738 |
. . . . . . 7
⊢ (𝐺 NeighbVtx 𝑦) = (𝐺 NeighbVtx 𝑦) |
6 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑥 ∈ 𝑉) |
7 | 6 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑥 ∈ 𝑉) |
8 | | eldifi 4057 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑉 ∖ {𝑥}) → 𝑦 ∈ 𝑉) |
9 | 8 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑦 ∈ 𝑉) |
10 | 9 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑦 ∈ 𝑉) |
11 | | eldif 3893 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝑉 ∖ {𝑥}) ↔ (𝑦 ∈ 𝑉 ∧ ¬ 𝑦 ∈ {𝑥})) |
12 | | velsn 4574 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) |
13 | 12 | biimpri 227 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → 𝑦 ∈ {𝑥}) |
14 | 13 | equcoms 2024 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → 𝑦 ∈ {𝑥}) |
15 | 14 | necon3bi 2969 |
. . . . . . . . . 10
⊢ (¬
𝑦 ∈ {𝑥} → 𝑥 ≠ 𝑦) |
16 | 11, 15 | simplbiim 504 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑉 ∖ {𝑥}) → 𝑥 ≠ 𝑦) |
17 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑥 ≠ 𝑦) |
18 | 17 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑥 ≠ 𝑦) |
19 | | simpr 484 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) |
20 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) → 𝐺 ∈ FriendGraph ) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝐺 ∈ FriendGraph ) |
22 | | eqid 2738 |
. . . . . . 7
⊢ (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (℩𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺))) = (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (℩𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺))) |
23 | 2, 3, 4, 5, 7, 10,
18, 19, 21, 22 | frgrncvvdeqlem10 28573 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (℩𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺))):(𝐺 NeighbVtx 𝑥)–1-1-onto→(𝐺 NeighbVtx 𝑦)) |
24 | 1, 23 | hasheqf1od 13996 |
. . . . 5
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑥)) = (♯‘(𝐺 NeighbVtx 𝑦))) |
25 | | frgrusgr 28526 |
. . . . . . . 8
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
26 | 25, 6 | anim12i 612 |
. . . . . . 7
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝐺 ∈ USGraph ∧ 𝑥 ∈ 𝑉)) |
27 | 26 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 ∈ USGraph ∧ 𝑥 ∈ 𝑉)) |
28 | 2 | hashnbusgrvd 27798 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑥)) = ((VtxDeg‘𝐺)‘𝑥)) |
29 | 27, 28 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑥)) = ((VtxDeg‘𝐺)‘𝑥)) |
30 | 25, 9 | anim12i 612 |
. . . . . . 7
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝑉)) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝑉)) |
32 | 2 | hashnbusgrvd 27798 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑦)) = ((VtxDeg‘𝐺)‘𝑦)) |
33 | 31, 32 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑦)) = ((VtxDeg‘𝐺)‘𝑦)) |
34 | 24, 29, 33 | 3eqtr3d 2786 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘𝑦)) |
35 | | frgrncvvdeq.d |
. . . . 5
⊢ 𝐷 = (VtxDeg‘𝐺) |
36 | 35 | fveq1i 6757 |
. . . 4
⊢ (𝐷‘𝑥) = ((VtxDeg‘𝐺)‘𝑥) |
37 | 35 | fveq1i 6757 |
. . . 4
⊢ (𝐷‘𝑦) = ((VtxDeg‘𝐺)‘𝑦) |
38 | 34, 36, 37 | 3eqtr4g 2804 |
. . 3
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐷‘𝑥) = (𝐷‘𝑦)) |
39 | 38 | ex 412 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦))) |
40 | 39 | ralrimivva 3114 |
1
⊢ (𝐺 ∈ FriendGraph →
∀𝑥 ∈ 𝑉 ∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦))) |