Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzfissfz Structured version   Visualization version   GIF version

Theorem uzfissfz 45329
Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzfissfz.m (𝜑𝑀 ∈ ℤ)
uzfissfz.z 𝑍 = (ℤ𝑀)
uzfissfz.a (𝜑𝐴𝑍)
uzfissfz.fi (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
uzfissfz (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzfissfz
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzfissfz.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 uzid 12815 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
4 uzfissfz.z . . . . . . 7 𝑍 = (ℤ𝑀)
54a1i 11 . . . . . 6 (𝜑𝑍 = (ℤ𝑀))
65eqcomd 2736 . . . . 5 (𝜑 → (ℤ𝑀) = 𝑍)
73, 6eleqtrd 2831 . . . 4 (𝜑𝑀𝑍)
87adantr 480 . . 3 ((𝜑𝐴 = ∅) → 𝑀𝑍)
9 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
10 0ss 4366 . . . . . 6 ∅ ⊆ (𝑀...𝑀)
1110a1i 11 . . . . 5 (𝐴 = ∅ → ∅ ⊆ (𝑀...𝑀))
129, 11eqsstrd 3984 . . . 4 (𝐴 = ∅ → 𝐴 ⊆ (𝑀...𝑀))
1312adantl 481 . . 3 ((𝜑𝐴 = ∅) → 𝐴 ⊆ (𝑀...𝑀))
14 oveq2 7398 . . . . 5 (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀))
1514sseq2d 3982 . . . 4 (𝑘 = 𝑀 → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...𝑀)))
1615rspcev 3591 . . 3 ((𝑀𝑍𝐴 ⊆ (𝑀...𝑀)) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
178, 13, 16syl2anc 584 . 2 ((𝜑𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
18 uzfissfz.a . . . . 5 (𝜑𝐴𝑍)
1918adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝑍)
20 uzssz 12821 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
214, 20eqsstri 3996 . . . . . . . 8 𝑍 ⊆ ℤ
2221a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℤ)
2318, 22sstrd 3960 . . . . . 6 (𝜑𝐴 ⊆ ℤ)
2423adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℤ)
259necon3bi 2952 . . . . . 6 𝐴 = ∅ → 𝐴 ≠ ∅)
2625adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
27 uzfissfz.fi . . . . . 6 (𝜑𝐴 ∈ Fin)
2827adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ Fin)
29 suprfinzcl 12655 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3024, 26, 28, 29syl3anc 1373 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3119, 30sseldd 3950 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝑍)
321ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀 ∈ ℤ)
3321, 31sselid 3947 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
3433adantr 480 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
3524sselda 3949 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ ℤ)
3618sselda 3949 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗𝑍)
374a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑍 = (ℤ𝑀))
3836, 37eleqtrd 2831 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑗 ∈ (ℤ𝑀))
39 eluzle 12813 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
4038, 39syl 17 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑀𝑗)
4140adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀𝑗)
42 zssre 12543 . . . . . . . . 9 ℤ ⊆ ℝ
4323, 42sstrdi 3962 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
4443ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ⊆ ℝ)
4526adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ≠ ∅)
46 fimaxre2 12135 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4743, 27, 46syl2anc 584 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4847ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
49 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗𝐴)
50 suprub 12151 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5144, 45, 48, 49, 50syl31anc 1375 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5232, 34, 35, 41, 51elfzd 13483 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5352ralrimiva 3126 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
54 dfss3 3938 . . . 4 (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5553, 54sylibr 234 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
56 oveq2 7398 . . . . 5 (𝑘 = sup(𝐴, ℝ, < ) → (𝑀...𝑘) = (𝑀...sup(𝐴, ℝ, < )))
5756sseq2d 3982 . . . 4 (𝑘 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
5857rspcev 3591 . . 3 ((sup(𝐴, ℝ, < ) ∈ 𝑍𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
5931, 55, 58syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6017, 59pm2.61dan 812 1 (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  supcsup 9398  cr 11074   < clt 11215  cle 11216  cz 12536  cuz 12800  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476
This theorem is referenced by:  sge0uzfsumgt  46449  sge0seq  46451  sge0reuz  46452  carageniuncllem2  46527  caratheodorylem2  46532
  Copyright terms: Public domain W3C validator