Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzfissfz Structured version   Visualization version   GIF version

Theorem uzfissfz 44334
Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzfissfz.m (𝜑𝑀 ∈ ℤ)
uzfissfz.z 𝑍 = (ℤ𝑀)
uzfissfz.a (𝜑𝐴𝑍)
uzfissfz.fi (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
uzfissfz (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzfissfz
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzfissfz.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 uzid 12841 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
4 uzfissfz.z . . . . . . 7 𝑍 = (ℤ𝑀)
54a1i 11 . . . . . 6 (𝜑𝑍 = (ℤ𝑀))
65eqcomd 2736 . . . . 5 (𝜑 → (ℤ𝑀) = 𝑍)
73, 6eleqtrd 2833 . . . 4 (𝜑𝑀𝑍)
87adantr 479 . . 3 ((𝜑𝐴 = ∅) → 𝑀𝑍)
9 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
10 0ss 4395 . . . . . 6 ∅ ⊆ (𝑀...𝑀)
1110a1i 11 . . . . 5 (𝐴 = ∅ → ∅ ⊆ (𝑀...𝑀))
129, 11eqsstrd 4019 . . . 4 (𝐴 = ∅ → 𝐴 ⊆ (𝑀...𝑀))
1312adantl 480 . . 3 ((𝜑𝐴 = ∅) → 𝐴 ⊆ (𝑀...𝑀))
14 oveq2 7419 . . . . 5 (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀))
1514sseq2d 4013 . . . 4 (𝑘 = 𝑀 → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...𝑀)))
1615rspcev 3611 . . 3 ((𝑀𝑍𝐴 ⊆ (𝑀...𝑀)) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
178, 13, 16syl2anc 582 . 2 ((𝜑𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
18 uzfissfz.a . . . . 5 (𝜑𝐴𝑍)
1918adantr 479 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝑍)
20 uzssz 12847 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
214, 20eqsstri 4015 . . . . . . . 8 𝑍 ⊆ ℤ
2221a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℤ)
2318, 22sstrd 3991 . . . . . 6 (𝜑𝐴 ⊆ ℤ)
2423adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℤ)
259necon3bi 2965 . . . . . 6 𝐴 = ∅ → 𝐴 ≠ ∅)
2625adantl 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
27 uzfissfz.fi . . . . . 6 (𝜑𝐴 ∈ Fin)
2827adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ Fin)
29 suprfinzcl 12680 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3024, 26, 28, 29syl3anc 1369 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3119, 30sseldd 3982 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝑍)
321ad2antrr 722 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀 ∈ ℤ)
3321, 31sselid 3979 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
3433adantr 479 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
3524sselda 3981 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ ℤ)
3618sselda 3981 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗𝑍)
374a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑍 = (ℤ𝑀))
3836, 37eleqtrd 2833 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑗 ∈ (ℤ𝑀))
39 eluzle 12839 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
4038, 39syl 17 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑀𝑗)
4140adantlr 711 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀𝑗)
42 zssre 12569 . . . . . . . . 9 ℤ ⊆ ℝ
4323, 42sstrdi 3993 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
4443ad2antrr 722 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ⊆ ℝ)
4526adantr 479 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ≠ ∅)
46 fimaxre2 12163 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4743, 27, 46syl2anc 582 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4847ad2antrr 722 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
49 simpr 483 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗𝐴)
50 suprub 12179 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5144, 45, 48, 49, 50syl31anc 1371 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5232, 34, 35, 41, 51elfzd 13496 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5352ralrimiva 3144 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
54 dfss3 3969 . . . 4 (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5553, 54sylibr 233 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
56 oveq2 7419 . . . . 5 (𝑘 = sup(𝐴, ℝ, < ) → (𝑀...𝑘) = (𝑀...sup(𝐴, ℝ, < )))
5756sseq2d 4013 . . . 4 (𝑘 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
5857rspcev 3611 . . 3 ((sup(𝐴, ℝ, < ) ∈ 𝑍𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
5931, 55, 58syl2anc 582 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6017, 59pm2.61dan 809 1 (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068  wss 3947  c0 4321   class class class wbr 5147  cfv 6542  (class class class)co 7411  Fincfn 8941  supcsup 9437  cr 11111   < clt 11252  cle 11253  cz 12562  cuz 12826  ...cfz 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489
This theorem is referenced by:  sge0uzfsumgt  45458  sge0seq  45460  sge0reuz  45461  carageniuncllem2  45536  caratheodorylem2  45541
  Copyright terms: Public domain W3C validator