| Step | Hyp | Ref
| Expression |
| 1 | | uzfissfz.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 2 | | uzid 12893 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | | uzfissfz.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
| 6 | 5 | eqcomd 2743 |
. . . . 5
⊢ (𝜑 →
(ℤ≥‘𝑀) = 𝑍) |
| 7 | 3, 6 | eleqtrd 2843 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 8 | 7 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝑀 ∈ 𝑍) |
| 9 | | id 22 |
. . . . 5
⊢ (𝐴 = ∅ → 𝐴 = ∅) |
| 10 | | 0ss 4400 |
. . . . . 6
⊢ ∅
⊆ (𝑀...𝑀) |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ (𝐴 = ∅ → ∅
⊆ (𝑀...𝑀)) |
| 12 | 9, 11 | eqsstrd 4018 |
. . . 4
⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝑀...𝑀)) |
| 13 | 12 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐴 ⊆ (𝑀...𝑀)) |
| 14 | | oveq2 7439 |
. . . . 5
⊢ (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀)) |
| 15 | 14 | sseq2d 4016 |
. . . 4
⊢ (𝑘 = 𝑀 → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...𝑀))) |
| 16 | 15 | rspcev 3622 |
. . 3
⊢ ((𝑀 ∈ 𝑍 ∧ 𝐴 ⊆ (𝑀...𝑀)) → ∃𝑘 ∈ 𝑍 𝐴 ⊆ (𝑀...𝑘)) |
| 17 | 8, 13, 16 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ 𝐴 = ∅) → ∃𝑘 ∈ 𝑍 𝐴 ⊆ (𝑀...𝑘)) |
| 18 | | uzfissfz.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ 𝑍) |
| 20 | | uzssz 12899 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 21 | 4, 20 | eqsstri 4030 |
. . . . . . . 8
⊢ 𝑍 ⊆
ℤ |
| 22 | 21 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ⊆ ℤ) |
| 23 | 18, 22 | sstrd 3994 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℤ) |
| 25 | 9 | necon3bi 2967 |
. . . . . 6
⊢ (¬
𝐴 = ∅ → 𝐴 ≠ ∅) |
| 26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
| 27 | | uzfissfz.fi |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 28 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ Fin) |
| 29 | | suprfinzcl 12732 |
. . . . 5
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| 30 | 24, 26, 28, 29 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| 31 | 19, 30 | sseldd 3984 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝑍) |
| 32 | 1 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 33 | 21, 31 | sselid 3981 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈
ℤ) |
| 34 | 33 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈
ℤ) |
| 35 | 24 | sselda 3983 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ ℤ) |
| 36 | 18 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝑍) |
| 37 | 4 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑍 = (ℤ≥‘𝑀)) |
| 38 | 36, 37 | eleqtrd 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 39 | | eluzle 12891 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑗) |
| 40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑀 ≤ 𝑗) |
| 41 | 40 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝑀 ≤ 𝑗) |
| 42 | | zssre 12620 |
. . . . . . . . 9
⊢ ℤ
⊆ ℝ |
| 43 | 23, 42 | sstrdi 3996 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 44 | 43 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 45 | 26 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝐴 ≠ ∅) |
| 46 | | fimaxre2 12213 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 47 | 43, 27, 46 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 48 | 47 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 49 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) |
| 50 | | suprub 12229 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑗 ∈ 𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < )) |
| 51 | 44, 45, 48, 49, 50 | syl31anc 1375 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < )) |
| 52 | 32, 34, 35, 41, 51 | elfzd 13555 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
| 53 | 52 | ralrimiva 3146 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑗 ∈ 𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
| 54 | | dfss3 3972 |
. . . 4
⊢ (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑗 ∈ 𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < ))) |
| 55 | 53, 54 | sylibr 234 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) |
| 56 | | oveq2 7439 |
. . . . 5
⊢ (𝑘 = sup(𝐴, ℝ, < ) → (𝑀...𝑘) = (𝑀...sup(𝐴, ℝ, < ))) |
| 57 | 56 | sseq2d 4016 |
. . . 4
⊢ (𝑘 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))) |
| 58 | 57 | rspcev 3622 |
. . 3
⊢
((sup(𝐴, ℝ,
< ) ∈ 𝑍 ∧ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑘 ∈ 𝑍 𝐴 ⊆ (𝑀...𝑘)) |
| 59 | 31, 55, 58 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑘 ∈ 𝑍 𝐴 ⊆ (𝑀...𝑘)) |
| 60 | 17, 59 | pm2.61dan 813 |
1
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 𝐴 ⊆ (𝑀...𝑘)) |