Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem1 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem1 43472
Description: If 𝐹 has bounded derivative on (𝐴(,)𝐵) then a sequence of points in its image converges to its lim sup. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem1.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem1.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem1.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
ioodvbdlimc1lem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem1.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem1.m (𝜑𝑀 ∈ ℤ)
ioodvbdlimc1lem1.r (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
ioodvbdlimc1lem1.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
ioodvbdlimc1lem1.rcnv (𝜑𝑅 ∈ dom ⇝ )
ioodvbdlimc1lem1.k 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
Assertion
Ref Expression
ioodvbdlimc1lem1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Distinct variable groups:   𝐴,𝑖,𝑘,𝑥,𝑧   𝑦,𝐴,𝑖,𝑥,𝑧   𝐵,𝑖,𝑘,𝑥,𝑧   𝑦,𝐵   𝑖,𝐹,𝑗,𝑥   𝑘,𝐹,𝑧   𝑦,𝐹   𝑖,𝐾,𝑗   𝑘,𝐾   𝑦,𝐾   𝑖,𝑀,𝑗,𝑥   𝑘,𝑀   𝑅,𝑖,𝑗   𝑅,𝑘   𝑦,𝑅   𝑆,𝑖,𝑘,𝑥   𝜑,𝑖,𝑗,𝑥   𝜑,𝑘   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑗)   𝐵(𝑗)   𝑅(𝑥,𝑧)   𝑆(𝑦,𝑧,𝑗)   𝐾(𝑥,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem ioodvbdlimc1lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (ℤ𝑀) = (ℤ𝑀)
2 ioodvbdlimc1lem1.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
3 cncff 24056 . . . . . 6 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
42, 3syl 17 . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
54adantr 481 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
6 ioodvbdlimc1lem1.r . . . . 5 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
76ffvelrnda 6961 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) ∈ (𝐴(,)𝐵))
85, 7ffvelrnd 6962 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝑅𝑗)) ∈ ℝ)
9 ioodvbdlimc1lem1.s . . 3 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
108, 9fmptd 6988 . 2 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
11 ssrab2 4013 . . . . 5 {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀)
12 ioodvbdlimc1lem1.k . . . . . 6 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
13 rpre 12738 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1413adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
15 2fveq3 6779 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥)))
1615cbvmptv 5187 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1716rneqi 5846 . . . . . . . . . . . . . . 15 ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1817supeq1i 9206 . . . . . . . . . . . . . 14 sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
19 ioodvbdlimc1lem1.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
20 ioodvbdlimc1lem1.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
21 ioodvbdlimc1lem1.altb . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝐵)
22 ioomidp 43052 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2319, 20, 21, 22syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2423ne0d 4269 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
25 ioossre 13140 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 25115 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
284, 26, 27syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
29 ioodvbdlimc1lem1.dmdv . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3029feq2d 6586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3128, 30mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
32 ax-resscn 10928 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6618 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
3534ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
3635abscld 15148 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
37 ioodvbdlimc1lem1.dvbd . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
38 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
39 eqid 2738 . . . . . . . . . . . . . . . 16 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
4024, 36, 37, 38, 39suprnmpt 42710 . . . . . . . . . . . . . . 15 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
4140simpld 495 . . . . . . . . . . . . . 14 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
4218, 41eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
4342adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
44 peano2re 11148 . . . . . . . . . . . 12 (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
4543, 44syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
46 0red 10978 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
47 1red 10976 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4846, 47readdcld 11004 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
4942, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
5046ltp1d 11905 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
5134, 23ffvelrnd 6962 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
5251abscld 15148 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
5351absge0d 15156 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
5440simprd 496 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
55 2fveq3 6779 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥)))
5618a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5755, 56breq12d 5087 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
5857cbvralvw 3383 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5954, 58sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
60 2fveq3 6779 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
6160breq1d 5084 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )))
6261rspcva 3559 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6323, 59, 62syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6446, 52, 42, 53, 63letrd 11132 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6546, 42, 47, 64leadd1dd 11589 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6646, 48, 49, 50, 65ltletrd 11135 . . . . . . . . . . . . 13 (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6766gt0ne0d 11539 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6867adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6914, 45, 68redivcld 11803 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
70 rpgt0 12742 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → 0 < 𝑥)
7170adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
7266adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
7314, 45, 71, 72divgt0d 11910 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 0 < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
7469, 73elrpd 12769 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+)
75 ioodvbdlimc1lem1.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7675adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
77 ioodvbdlimc1lem1.rcnv . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
7877adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝ )
791climcau 15382 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
8076, 78, 79syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
81 breq2 5078 . . . . . . . . . . 11 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8281rexralbidv 3230 . . . . . . . . . 10 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → (∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8382rspcva 3559 . . . . . . . . 9 (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+ ∧ ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8474, 80, 83syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
85 rabn0 4319 . . . . . . . 8 ({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅ ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8684, 85sylibr 233 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
87 infssuzcl 12672 . . . . . . 7 (({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀) ∧ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8811, 86, 87sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8912, 88eqeltrid 2843 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
9011, 89sselid 3919 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ (ℤ𝑀))
91 2fveq3 6779 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝑖)))
92 uzss 12605 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
9390, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (ℤ𝐾) ⊆ (ℤ𝑀))
9493sselda 3921 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑖 ∈ (ℤ𝑀))
954ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
966ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
9796, 94ffvelrnd 6962 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
9895, 97ffvelrnd 6962 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℝ)
999, 91, 94, 98fvmptd3 6898 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝑖) = (𝐹‘(𝑅𝑖)))
100 2fveq3 6779 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝐾)))
10190adantr 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
10296, 101ffvelrnd 6962 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
10395, 102ffvelrnd 6962 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℝ)
1049, 100, 101, 103fvmptd3 6898 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝐾) = (𝐹‘(𝑅𝐾)))
10599, 104oveq12d 7293 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑆𝑖) − (𝑆𝐾)) = ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))))
106105fveq2d 6778 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) = (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))))
10798recnd 11003 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
108103recnd 11003 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
109107, 108subcld 11332 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) ∈ ℂ)
110109abscld 15148 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
111110adantr 481 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
11242ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
113112adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
1146adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
115114, 90ffvelrnd 6962 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
11625, 115sselid 3919 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ)
117116ad2antrr 723 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
11825, 97sselid 3919 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ)
119118adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
120117, 119resubcld 11403 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ)
121113, 120remulcld 11005 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
12213ad3antlr 728 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝑥 ∈ ℝ)
123107adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
124108adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
125123, 124abssubd 15165 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))))
12619ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐴 ∈ ℝ)
12720ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ)
12895adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
12929ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
13059ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
13197adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
132118rexrd 11025 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ*)
133132adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ*)
13420rexrd 11025 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
135134ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐵 ∈ ℝ*)
136135adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ*)
137 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) < (𝑅𝐾))
13819rexrd 11025 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
139138adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
140134adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
141 iooltub 43048 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝐾) ∈ (𝐴(,)𝐵)) → (𝑅𝐾) < 𝐵)
142139, 140, 115, 141syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) < 𝐵)
143142ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) < 𝐵)
144133, 136, 117, 137, 143eliood 43036 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ((𝑅𝑖)(,)𝐵))
145126, 127, 128, 129, 113, 130, 131, 144dvbdfbdioolem1 43469 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∧ (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
146145simpld 495 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
147125, 146eqbrtrd 5096 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
148113, 44syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
149148, 120remulcld 11005 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
150119, 117posdifd 11562 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝑖) < (𝑅𝐾) ↔ 0 < ((𝑅𝐾) − (𝑅𝑖))))
151137, 150mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 0 < ((𝑅𝐾) − (𝑅𝑖)))
152120, 151elrpd 12769 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ+)
153113ltp1d 11905 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
154113, 148, 152, 153ltmul1dd 12827 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))))
15525, 102sselid 3919 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ ℝ)
156118, 155resubcld 11403 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
157156recnd 11003 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℂ)
158157abscld 15148 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
159158adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
16069ad2antrr 723 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
161120leabsd 15126 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝐾) − (𝑅𝑖))))
162117recnd 11003 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℂ)
163118recnd 11003 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℂ)
164163adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℂ)
165162, 164abssubd 15165 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝐾) − (𝑅𝑖))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
166161, 165breqtrd 5100 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
167 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → (ℤ𝑘) = (ℤ𝐾))
168 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐾 → (𝑅𝑘) = (𝑅𝐾))
169168oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐾 → ((𝑅𝑖) − (𝑅𝑘)) = ((𝑅𝑖) − (𝑅𝐾)))
170169fveq2d 6778 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐾 → (abs‘((𝑅𝑖) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
171170breq1d 5084 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
172167, 171raleqbidv 3336 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
173172elrab 3624 . . . . . . . . . . . . . . 15 (𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
17489, 173sylib 217 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
175174simprd 496 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
176175r19.21bi 3134 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
177176adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
178120, 159, 160, 166, 177lelttrd 11133 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
17949, 66elrpd 12769 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
180179ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
181120, 122, 180ltmuldiv2d 12820 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥 ↔ ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
182178, 181mpbird 256 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
183121, 149, 122, 154, 182lttrd 11136 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
184111, 121, 122, 147, 183lelttrd 11133 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
185 fveq2 6774 . . . . . . . . . . . . 13 ((𝑅𝑖) = (𝑅𝐾) → (𝐹‘(𝑅𝑖)) = (𝐹‘(𝑅𝐾)))
186185oveq1d 7290 . . . . . . . . . . . 12 ((𝑅𝑖) = (𝑅𝐾) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))))
187108subidd 11320 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))) = 0)
188186, 187sylan9eqr 2800 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = 0)
189188abs00bd 15003 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = 0)
19070ad3antlr 728 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → 0 < 𝑥)
191189, 190eqbrtrd 5096 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
192191adantlr 712 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
193 simpll 764 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)))
194155ad2antrr 723 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
195118ad2antrr 723 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
196 id 22 . . . . . . . . . . . . 13 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝐾) = (𝑅𝑖))
197196eqcomd 2744 . . . . . . . . . . . 12 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝑖) = (𝑅𝐾))
198197necon3bi 2970 . . . . . . . . . . 11 (¬ (𝑅𝑖) = (𝑅𝐾) → (𝑅𝐾) ≠ (𝑅𝑖))
199198adantl 482 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ≠ (𝑅𝑖))
200 simplr 766 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ¬ (𝑅𝑖) < (𝑅𝐾))
201194, 195, 199, 200lttri5d 42838 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) < (𝑅𝑖))
202110adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
203112, 156remulcld 11005 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
204203adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
20513ad3antlr 728 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝑥 ∈ ℝ)
20619ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐴 ∈ ℝ)
20720ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ)
20895adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
20929ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
21042ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
21159ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
212102adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
213116rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ*)
214213ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ*)
215207rexrd 11025 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ*)
216118adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ℝ)
217 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) < (𝑅𝑖))
218138ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐴 ∈ ℝ*)
219 iooltub 43048 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝑖) ∈ (𝐴(,)𝐵)) → (𝑅𝑖) < 𝐵)
220218, 135, 97, 219syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) < 𝐵)
221220adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) < 𝐵)
222214, 215, 216, 217, 221eliood 43036 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ((𝑅𝐾)(,)𝐵))
223206, 207, 208, 209, 210, 211, 212, 222dvbdfbdioolem1 43469 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∧ (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
224223simpld 495 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))))
225 1red 10976 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 1 ∈ ℝ)
226210, 225readdcld 11004 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
227155adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ)
228216, 227resubcld 11403 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
229226, 228remulcld 11005 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
230210, 44syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
231227, 216posdifd 11562 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝐾) < (𝑅𝑖) ↔ 0 < ((𝑅𝑖) − (𝑅𝐾))))
232217, 231mpbid 231 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 0 < ((𝑅𝑖) − (𝑅𝐾)))
233228, 232elrpd 12769 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ+)
234210ltp1d 11905 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
235210, 230, 233, 234ltmul1dd 12827 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))))
236158adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
23769ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
238228leabsd 15126 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
239176adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
240228, 236, 237, 238, 239lelttrd 11133 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
241179ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
242228, 205, 241ltmuldiv2d 12820 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥 ↔ ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
243240, 242mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
244204, 229, 205, 235, 243lttrd 11136 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
245202, 204, 205, 224, 244lelttrd 11133 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
246193, 201, 245syl2anc 584 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
247192, 246pm2.61dan 810 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
248184, 247pm2.61dan 810 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
249106, 248eqbrtrd 5096 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
250249ralrimiva 3103 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
251 fveq2 6774 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑆𝑘) = (𝑆𝐾))
252251oveq2d 7291 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑆𝑖) − (𝑆𝑘)) = ((𝑆𝑖) − (𝑆𝐾)))
253252fveq2d 6778 . . . . . . 7 (𝑘 = 𝐾 → (abs‘((𝑆𝑖) − (𝑆𝑘))) = (abs‘((𝑆𝑖) − (𝑆𝐾))))
254253breq1d 5084 . . . . . 6 (𝑘 = 𝐾 → ((abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
255167, 254raleqbidv 3336 . . . . 5 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
256255rspcev 3561 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
25790, 250, 256syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
258257ralrimiva 3103 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
2591, 10, 258caurcvg 15388 1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  infcinf 9200  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  cz 12319  cuz 12582  +crp 12730  (,)cioo 13079  abscabs 14945  lim supclsp 15179  cli 15193  cnccncf 24039   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  ioodvbdlimc1lem2  43473  ioodvbdlimc2lem  43475
  Copyright terms: Public domain W3C validator