Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem1 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem1 45936
Description: If 𝐹 has bounded derivative on (𝐴(,)𝐵) then a sequence of points in its image converges to its lim sup. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem1.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem1.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem1.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
ioodvbdlimc1lem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem1.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem1.m (𝜑𝑀 ∈ ℤ)
ioodvbdlimc1lem1.r (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
ioodvbdlimc1lem1.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
ioodvbdlimc1lem1.rcnv (𝜑𝑅 ∈ dom ⇝ )
ioodvbdlimc1lem1.k 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
Assertion
Ref Expression
ioodvbdlimc1lem1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Distinct variable groups:   𝐴,𝑖,𝑘,𝑥,𝑧   𝑦,𝐴,𝑖,𝑥,𝑧   𝐵,𝑖,𝑘,𝑥,𝑧   𝑦,𝐵   𝑖,𝐹,𝑗,𝑥   𝑘,𝐹,𝑧   𝑦,𝐹   𝑖,𝐾,𝑗   𝑘,𝐾   𝑦,𝐾   𝑖,𝑀,𝑗,𝑥   𝑘,𝑀   𝑅,𝑖,𝑗   𝑅,𝑘   𝑦,𝑅   𝑆,𝑖,𝑘,𝑥   𝜑,𝑖,𝑗,𝑥   𝜑,𝑘   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑗)   𝐵(𝑗)   𝑅(𝑥,𝑧)   𝑆(𝑦,𝑧,𝑗)   𝐾(𝑥,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem ioodvbdlimc1lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (ℤ𝑀) = (ℤ𝑀)
2 ioodvbdlimc1lem1.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
3 cncff 24793 . . . . . 6 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
42, 3syl 17 . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
54adantr 480 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
6 ioodvbdlimc1lem1.r . . . . 5 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
76ffvelcdmda 7059 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) ∈ (𝐴(,)𝐵))
85, 7ffvelcdmd 7060 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝑅𝑗)) ∈ ℝ)
9 ioodvbdlimc1lem1.s . . 3 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
108, 9fmptd 7089 . 2 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
11 ssrab2 4046 . . . . 5 {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀)
12 ioodvbdlimc1lem1.k . . . . . 6 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
13 rpre 12967 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1413adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
15 2fveq3 6866 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥)))
1615cbvmptv 5214 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1716rneqi 5904 . . . . . . . . . . . . . . 15 ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1817supeq1i 9405 . . . . . . . . . . . . . 14 sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
19 ioodvbdlimc1lem1.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
20 ioodvbdlimc1lem1.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
21 ioodvbdlimc1lem1.altb . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝐵)
22 ioomidp 45519 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2319, 20, 21, 22syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2423ne0d 4308 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
25 ioossre 13375 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 25862 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
284, 26, 27syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
29 ioodvbdlimc1lem1.dmdv . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3029feq2d 6675 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3128, 30mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
32 ax-resscn 11132 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6708 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
3534ffvelcdmda 7059 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
3635abscld 15412 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
37 ioodvbdlimc1lem1.dvbd . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
38 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
39 eqid 2730 . . . . . . . . . . . . . . . 16 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
4024, 36, 37, 38, 39suprnmpt 45175 . . . . . . . . . . . . . . 15 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
4140simpld 494 . . . . . . . . . . . . . 14 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
4218, 41eqeltrid 2833 . . . . . . . . . . . . 13 (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
4342adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
44 peano2re 11354 . . . . . . . . . . . 12 (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
4543, 44syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
46 0red 11184 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
47 1red 11182 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4846, 47readdcld 11210 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
4942, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
5046ltp1d 12120 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
5134, 23ffvelcdmd 7060 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
5251abscld 15412 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
5351absge0d 15420 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
5440simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
55 2fveq3 6866 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥)))
5618a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5755, 56breq12d 5123 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
5857cbvralvw 3216 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5954, 58sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
60 2fveq3 6866 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
6160breq1d 5120 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )))
6261rspcva 3589 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6323, 59, 62syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6446, 52, 42, 53, 63letrd 11338 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6546, 42, 47, 64leadd1dd 11799 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6646, 48, 49, 50, 65ltletrd 11341 . . . . . . . . . . . . 13 (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6766gt0ne0d 11749 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6867adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6914, 45, 68redivcld 12017 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
70 rpgt0 12971 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → 0 < 𝑥)
7170adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
7266adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
7314, 45, 71, 72divgt0d 12125 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 0 < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
7469, 73elrpd 12999 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+)
75 ioodvbdlimc1lem1.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7675adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
77 ioodvbdlimc1lem1.rcnv . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
7877adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝ )
791climcau 15644 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
8076, 78, 79syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
81 breq2 5114 . . . . . . . . . . 11 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8281rexralbidv 3204 . . . . . . . . . 10 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → (∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8382rspcva 3589 . . . . . . . . 9 (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+ ∧ ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8474, 80, 83syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
85 rabn0 4355 . . . . . . . 8 ({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅ ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8684, 85sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
87 infssuzcl 12898 . . . . . . 7 (({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀) ∧ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8811, 86, 87sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8912, 88eqeltrid 2833 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
9011, 89sselid 3947 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ (ℤ𝑀))
91 2fveq3 6866 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝑖)))
92 uzss 12823 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
9390, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (ℤ𝐾) ⊆ (ℤ𝑀))
9493sselda 3949 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑖 ∈ (ℤ𝑀))
954ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
966ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
9796, 94ffvelcdmd 7060 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
9895, 97ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℝ)
999, 91, 94, 98fvmptd3 6994 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝑖) = (𝐹‘(𝑅𝑖)))
100 2fveq3 6866 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝐾)))
10190adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
10296, 101ffvelcdmd 7060 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
10395, 102ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℝ)
1049, 100, 101, 103fvmptd3 6994 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝐾) = (𝐹‘(𝑅𝐾)))
10599, 104oveq12d 7408 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑆𝑖) − (𝑆𝐾)) = ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))))
106105fveq2d 6865 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) = (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))))
10798recnd 11209 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
108103recnd 11209 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
109107, 108subcld 11540 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) ∈ ℂ)
110109abscld 15412 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
111110adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
11242ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
113112adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
1146adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
115114, 90ffvelcdmd 7060 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
11625, 115sselid 3947 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ)
117116ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
11825, 97sselid 3947 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ)
119118adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
120117, 119resubcld 11613 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ)
121113, 120remulcld 11211 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
12213ad3antlr 731 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝑥 ∈ ℝ)
123107adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
124108adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
125123, 124abssubd 15429 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))))
12619ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐴 ∈ ℝ)
12720ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ)
12895adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
12929ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
13059ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
13197adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
132118rexrd 11231 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ*)
133132adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ*)
13420rexrd 11231 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
135134ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐵 ∈ ℝ*)
136135adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ*)
137 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) < (𝑅𝐾))
13819rexrd 11231 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
139138adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
140134adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
141 iooltub 45515 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝐾) ∈ (𝐴(,)𝐵)) → (𝑅𝐾) < 𝐵)
142139, 140, 115, 141syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) < 𝐵)
143142ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) < 𝐵)
144133, 136, 117, 137, 143eliood 45503 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ((𝑅𝑖)(,)𝐵))
145126, 127, 128, 129, 113, 130, 131, 144dvbdfbdioolem1 45933 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∧ (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
146145simpld 494 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
147125, 146eqbrtrd 5132 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
148113, 44syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
149148, 120remulcld 11211 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
150119, 117posdifd 11772 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝑖) < (𝑅𝐾) ↔ 0 < ((𝑅𝐾) − (𝑅𝑖))))
151137, 150mpbid 232 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 0 < ((𝑅𝐾) − (𝑅𝑖)))
152120, 151elrpd 12999 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ+)
153113ltp1d 12120 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
154113, 148, 152, 153ltmul1dd 13057 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))))
15525, 102sselid 3947 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ ℝ)
156118, 155resubcld 11613 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
157156recnd 11209 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℂ)
158157abscld 15412 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
159158adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
16069ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
161120leabsd 15388 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝐾) − (𝑅𝑖))))
162117recnd 11209 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℂ)
163118recnd 11209 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℂ)
164163adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℂ)
165162, 164abssubd 15429 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝐾) − (𝑅𝑖))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
166161, 165breqtrd 5136 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
167 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → (ℤ𝑘) = (ℤ𝐾))
168 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐾 → (𝑅𝑘) = (𝑅𝐾))
169168oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐾 → ((𝑅𝑖) − (𝑅𝑘)) = ((𝑅𝑖) − (𝑅𝐾)))
170169fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐾 → (abs‘((𝑅𝑖) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
171170breq1d 5120 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
172167, 171raleqbidv 3321 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
173172elrab 3662 . . . . . . . . . . . . . . 15 (𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
17489, 173sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
175174simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
176175r19.21bi 3230 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
177176adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
178120, 159, 160, 166, 177lelttrd 11339 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
17949, 66elrpd 12999 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
180179ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
181120, 122, 180ltmuldiv2d 13050 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥 ↔ ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
182178, 181mpbird 257 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
183121, 149, 122, 154, 182lttrd 11342 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
184111, 121, 122, 147, 183lelttrd 11339 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
185 fveq2 6861 . . . . . . . . . . . . 13 ((𝑅𝑖) = (𝑅𝐾) → (𝐹‘(𝑅𝑖)) = (𝐹‘(𝑅𝐾)))
186185oveq1d 7405 . . . . . . . . . . . 12 ((𝑅𝑖) = (𝑅𝐾) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))))
187108subidd 11528 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))) = 0)
188186, 187sylan9eqr 2787 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = 0)
189188abs00bd 15264 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = 0)
19070ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → 0 < 𝑥)
191189, 190eqbrtrd 5132 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
192191adantlr 715 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
193 simpll 766 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)))
194155ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
195118ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
196 id 22 . . . . . . . . . . . . 13 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝐾) = (𝑅𝑖))
197196eqcomd 2736 . . . . . . . . . . . 12 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝑖) = (𝑅𝐾))
198197necon3bi 2952 . . . . . . . . . . 11 (¬ (𝑅𝑖) = (𝑅𝐾) → (𝑅𝐾) ≠ (𝑅𝑖))
199198adantl 481 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ≠ (𝑅𝑖))
200 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ¬ (𝑅𝑖) < (𝑅𝐾))
201194, 195, 199, 200lttri5d 45304 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) < (𝑅𝑖))
202110adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
203112, 156remulcld 11211 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
204203adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
20513ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝑥 ∈ ℝ)
20619ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐴 ∈ ℝ)
20720ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ)
20895adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
20929ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
21042ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
21159ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
212102adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
213116rexrd 11231 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ*)
214213ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ*)
215207rexrd 11231 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ*)
216118adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ℝ)
217 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) < (𝑅𝑖))
218138ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐴 ∈ ℝ*)
219 iooltub 45515 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝑖) ∈ (𝐴(,)𝐵)) → (𝑅𝑖) < 𝐵)
220218, 135, 97, 219syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) < 𝐵)
221220adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) < 𝐵)
222214, 215, 216, 217, 221eliood 45503 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ((𝑅𝐾)(,)𝐵))
223206, 207, 208, 209, 210, 211, 212, 222dvbdfbdioolem1 45933 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∧ (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
224223simpld 494 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))))
225 1red 11182 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 1 ∈ ℝ)
226210, 225readdcld 11210 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
227155adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ)
228216, 227resubcld 11613 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
229226, 228remulcld 11211 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
230210, 44syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
231227, 216posdifd 11772 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝐾) < (𝑅𝑖) ↔ 0 < ((𝑅𝑖) − (𝑅𝐾))))
232217, 231mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 0 < ((𝑅𝑖) − (𝑅𝐾)))
233228, 232elrpd 12999 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ+)
234210ltp1d 12120 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
235210, 230, 233, 234ltmul1dd 13057 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))))
236158adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
23769ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
238228leabsd 15388 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
239176adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
240228, 236, 237, 238, 239lelttrd 11339 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
241179ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
242228, 205, 241ltmuldiv2d 13050 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥 ↔ ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
243240, 242mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
244204, 229, 205, 235, 243lttrd 11342 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
245202, 204, 205, 224, 244lelttrd 11339 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
246193, 201, 245syl2anc 584 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
247192, 246pm2.61dan 812 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
248184, 247pm2.61dan 812 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
249106, 248eqbrtrd 5132 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
250249ralrimiva 3126 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
251 fveq2 6861 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑆𝑘) = (𝑆𝐾))
252251oveq2d 7406 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑆𝑖) − (𝑆𝑘)) = ((𝑆𝑖) − (𝑆𝐾)))
253252fveq2d 6865 . . . . . . 7 (𝑘 = 𝐾 → (abs‘((𝑆𝑖) − (𝑆𝑘))) = (abs‘((𝑆𝑖) − (𝑆𝐾))))
254253breq1d 5120 . . . . . 6 (𝑘 = 𝐾 → ((abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
255167, 254raleqbidv 3321 . . . . 5 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
256255rspcev 3591 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
25790, 250, 256syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
258257ralrimiva 3126 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
2591, 10, 258caurcvg 15650 1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  infcinf 9399  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  cz 12536  cuz 12800  +crp 12958  (,)cioo 13313  abscabs 15207  lim supclsp 15443  cli 15457  cnccncf 24776   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  ioodvbdlimc1lem2  45937  ioodvbdlimc2lem  45939
  Copyright terms: Public domain W3C validator