Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem1 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem1 45454
Description: If 𝐹 has bounded derivative on (𝐴(,)𝐵) then a sequence of points in its image converges to its lim sup. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem1.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem1.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem1.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
ioodvbdlimc1lem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem1.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem1.m (𝜑𝑀 ∈ ℤ)
ioodvbdlimc1lem1.r (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
ioodvbdlimc1lem1.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
ioodvbdlimc1lem1.rcnv (𝜑𝑅 ∈ dom ⇝ )
ioodvbdlimc1lem1.k 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
Assertion
Ref Expression
ioodvbdlimc1lem1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Distinct variable groups:   𝐴,𝑖,𝑘,𝑥,𝑧   𝑦,𝐴,𝑖,𝑥,𝑧   𝐵,𝑖,𝑘,𝑥,𝑧   𝑦,𝐵   𝑖,𝐹,𝑗,𝑥   𝑘,𝐹,𝑧   𝑦,𝐹   𝑖,𝐾,𝑗   𝑘,𝐾   𝑦,𝐾   𝑖,𝑀,𝑗,𝑥   𝑘,𝑀   𝑅,𝑖,𝑗   𝑅,𝑘   𝑦,𝑅   𝑆,𝑖,𝑘,𝑥   𝜑,𝑖,𝑗,𝑥   𝜑,𝑘   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑗)   𝐵(𝑗)   𝑅(𝑥,𝑧)   𝑆(𝑦,𝑧,𝑗)   𝐾(𝑥,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem ioodvbdlimc1lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 (ℤ𝑀) = (ℤ𝑀)
2 ioodvbdlimc1lem1.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
3 cncff 24857 . . . . . 6 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
42, 3syl 17 . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
54adantr 479 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
6 ioodvbdlimc1lem1.r . . . . 5 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
76ffvelcdmda 7093 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) ∈ (𝐴(,)𝐵))
85, 7ffvelcdmd 7094 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝑅𝑗)) ∈ ℝ)
9 ioodvbdlimc1lem1.s . . 3 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
108, 9fmptd 7123 . 2 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
11 ssrab2 4073 . . . . 5 {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀)
12 ioodvbdlimc1lem1.k . . . . . 6 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
13 rpre 13017 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1413adantl 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
15 2fveq3 6901 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥)))
1615cbvmptv 5262 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1716rneqi 5939 . . . . . . . . . . . . . . 15 ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1817supeq1i 9472 . . . . . . . . . . . . . 14 sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
19 ioodvbdlimc1lem1.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
20 ioodvbdlimc1lem1.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
21 ioodvbdlimc1lem1.altb . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝐵)
22 ioomidp 45034 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2319, 20, 21, 22syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2423ne0d 4335 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
25 ioossre 13420 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 25927 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
284, 26, 27syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
29 ioodvbdlimc1lem1.dmdv . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3029feq2d 6709 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3128, 30mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
32 ax-resscn 11197 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6740 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
3534ffvelcdmda 7093 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
3635abscld 15419 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
37 ioodvbdlimc1lem1.dvbd . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
38 eqid 2725 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
39 eqid 2725 . . . . . . . . . . . . . . . 16 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
4024, 36, 37, 38, 39suprnmpt 44683 . . . . . . . . . . . . . . 15 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
4140simpld 493 . . . . . . . . . . . . . 14 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
4218, 41eqeltrid 2829 . . . . . . . . . . . . 13 (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
4342adantr 479 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
44 peano2re 11419 . . . . . . . . . . . 12 (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
4543, 44syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
46 0red 11249 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
47 1red 11247 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4846, 47readdcld 11275 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
4942, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
5046ltp1d 12177 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
5134, 23ffvelcdmd 7094 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
5251abscld 15419 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
5351absge0d 15427 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
5440simprd 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
55 2fveq3 6901 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥)))
5618a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5755, 56breq12d 5162 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
5857cbvralvw 3224 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5954, 58sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
60 2fveq3 6901 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
6160breq1d 5159 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )))
6261rspcva 3604 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6323, 59, 62syl2anc 582 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6446, 52, 42, 53, 63letrd 11403 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6546, 42, 47, 64leadd1dd 11860 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6646, 48, 49, 50, 65ltletrd 11406 . . . . . . . . . . . . 13 (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6766gt0ne0d 11810 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6867adantr 479 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6914, 45, 68redivcld 12075 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
70 rpgt0 13021 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → 0 < 𝑥)
7170adantl 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
7266adantr 479 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
7314, 45, 71, 72divgt0d 12182 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 0 < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
7469, 73elrpd 13048 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+)
75 ioodvbdlimc1lem1.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7675adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
77 ioodvbdlimc1lem1.rcnv . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
7877adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝ )
791climcau 15653 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
8076, 78, 79syl2anc 582 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
81 breq2 5153 . . . . . . . . . . 11 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8281rexralbidv 3210 . . . . . . . . . 10 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → (∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8382rspcva 3604 . . . . . . . . 9 (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+ ∧ ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8474, 80, 83syl2anc 582 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
85 rabn0 4387 . . . . . . . 8 ({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅ ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8684, 85sylibr 233 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
87 infssuzcl 12949 . . . . . . 7 (({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀) ∧ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8811, 86, 87sylancr 585 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8912, 88eqeltrid 2829 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
9011, 89sselid 3974 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ (ℤ𝑀))
91 2fveq3 6901 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝑖)))
92 uzss 12878 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
9390, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (ℤ𝐾) ⊆ (ℤ𝑀))
9493sselda 3976 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑖 ∈ (ℤ𝑀))
954ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
966ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
9796, 94ffvelcdmd 7094 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
9895, 97ffvelcdmd 7094 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℝ)
999, 91, 94, 98fvmptd3 7027 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝑖) = (𝐹‘(𝑅𝑖)))
100 2fveq3 6901 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝐾)))
10190adantr 479 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
10296, 101ffvelcdmd 7094 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
10395, 102ffvelcdmd 7094 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℝ)
1049, 100, 101, 103fvmptd3 7027 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝐾) = (𝐹‘(𝑅𝐾)))
10599, 104oveq12d 7437 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑆𝑖) − (𝑆𝐾)) = ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))))
106105fveq2d 6900 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) = (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))))
10798recnd 11274 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
108103recnd 11274 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
109107, 108subcld 11603 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) ∈ ℂ)
110109abscld 15419 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
111110adantr 479 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
11242ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
113112adantr 479 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
1146adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
115114, 90ffvelcdmd 7094 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
11625, 115sselid 3974 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ)
117116ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
11825, 97sselid 3974 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ)
119118adantr 479 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
120117, 119resubcld 11674 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ)
121113, 120remulcld 11276 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
12213ad3antlr 729 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝑥 ∈ ℝ)
123107adantr 479 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
124108adantr 479 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
125123, 124abssubd 15436 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))))
12619ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐴 ∈ ℝ)
12720ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ)
12895adantr 479 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
12929ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
13059ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
13197adantr 479 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
132118rexrd 11296 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ*)
133132adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ*)
13420rexrd 11296 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
135134ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐵 ∈ ℝ*)
136135adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ*)
137 simpr 483 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) < (𝑅𝐾))
13819rexrd 11296 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
139138adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
140134adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
141 iooltub 45030 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝐾) ∈ (𝐴(,)𝐵)) → (𝑅𝐾) < 𝐵)
142139, 140, 115, 141syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) < 𝐵)
143142ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) < 𝐵)
144133, 136, 117, 137, 143eliood 45018 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ((𝑅𝑖)(,)𝐵))
145126, 127, 128, 129, 113, 130, 131, 144dvbdfbdioolem1 45451 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∧ (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
146145simpld 493 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
147125, 146eqbrtrd 5171 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
148113, 44syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
149148, 120remulcld 11276 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
150119, 117posdifd 11833 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝑖) < (𝑅𝐾) ↔ 0 < ((𝑅𝐾) − (𝑅𝑖))))
151137, 150mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 0 < ((𝑅𝐾) − (𝑅𝑖)))
152120, 151elrpd 13048 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ+)
153113ltp1d 12177 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
154113, 148, 152, 153ltmul1dd 13106 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))))
15525, 102sselid 3974 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ ℝ)
156118, 155resubcld 11674 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
157156recnd 11274 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℂ)
158157abscld 15419 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
159158adantr 479 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
16069ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
161120leabsd 15397 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝐾) − (𝑅𝑖))))
162117recnd 11274 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℂ)
163118recnd 11274 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℂ)
164163adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℂ)
165162, 164abssubd 15436 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝐾) − (𝑅𝑖))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
166161, 165breqtrd 5175 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
167 fveq2 6896 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → (ℤ𝑘) = (ℤ𝐾))
168 fveq2 6896 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐾 → (𝑅𝑘) = (𝑅𝐾))
169168oveq2d 7435 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐾 → ((𝑅𝑖) − (𝑅𝑘)) = ((𝑅𝑖) − (𝑅𝐾)))
170169fveq2d 6900 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐾 → (abs‘((𝑅𝑖) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
171170breq1d 5159 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
172167, 171raleqbidv 3329 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
173172elrab 3679 . . . . . . . . . . . . . . 15 (𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
17489, 173sylib 217 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
175174simprd 494 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
176175r19.21bi 3238 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
177176adantr 479 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
178120, 159, 160, 166, 177lelttrd 11404 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
17949, 66elrpd 13048 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
180179ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
181120, 122, 180ltmuldiv2d 13099 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥 ↔ ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
182178, 181mpbird 256 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
183121, 149, 122, 154, 182lttrd 11407 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
184111, 121, 122, 147, 183lelttrd 11404 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
185 fveq2 6896 . . . . . . . . . . . . 13 ((𝑅𝑖) = (𝑅𝐾) → (𝐹‘(𝑅𝑖)) = (𝐹‘(𝑅𝐾)))
186185oveq1d 7434 . . . . . . . . . . . 12 ((𝑅𝑖) = (𝑅𝐾) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))))
187108subidd 11591 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))) = 0)
188186, 187sylan9eqr 2787 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = 0)
189188abs00bd 15274 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = 0)
19070ad3antlr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → 0 < 𝑥)
191189, 190eqbrtrd 5171 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
192191adantlr 713 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
193 simpll 765 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)))
194155ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
195118ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
196 id 22 . . . . . . . . . . . . 13 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝐾) = (𝑅𝑖))
197196eqcomd 2731 . . . . . . . . . . . 12 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝑖) = (𝑅𝐾))
198197necon3bi 2956 . . . . . . . . . . 11 (¬ (𝑅𝑖) = (𝑅𝐾) → (𝑅𝐾) ≠ (𝑅𝑖))
199198adantl 480 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ≠ (𝑅𝑖))
200 simplr 767 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ¬ (𝑅𝑖) < (𝑅𝐾))
201194, 195, 199, 200lttri5d 44816 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) < (𝑅𝑖))
202110adantr 479 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
203112, 156remulcld 11276 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
204203adantr 479 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
20513ad3antlr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝑥 ∈ ℝ)
20619ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐴 ∈ ℝ)
20720ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ)
20895adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
20929ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
21042ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
21159ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
212102adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
213116rexrd 11296 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ*)
214213ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ*)
215207rexrd 11296 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ*)
216118adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ℝ)
217 simpr 483 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) < (𝑅𝑖))
218138ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐴 ∈ ℝ*)
219 iooltub 45030 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝑖) ∈ (𝐴(,)𝐵)) → (𝑅𝑖) < 𝐵)
220218, 135, 97, 219syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) < 𝐵)
221220adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) < 𝐵)
222214, 215, 216, 217, 221eliood 45018 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ((𝑅𝐾)(,)𝐵))
223206, 207, 208, 209, 210, 211, 212, 222dvbdfbdioolem1 45451 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∧ (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
224223simpld 493 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))))
225 1red 11247 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 1 ∈ ℝ)
226210, 225readdcld 11275 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
227155adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ)
228216, 227resubcld 11674 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
229226, 228remulcld 11276 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
230210, 44syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
231227, 216posdifd 11833 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝐾) < (𝑅𝑖) ↔ 0 < ((𝑅𝑖) − (𝑅𝐾))))
232217, 231mpbid 231 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 0 < ((𝑅𝑖) − (𝑅𝐾)))
233228, 232elrpd 13048 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ+)
234210ltp1d 12177 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
235210, 230, 233, 234ltmul1dd 13106 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))))
236158adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
23769ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
238228leabsd 15397 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
239176adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
240228, 236, 237, 238, 239lelttrd 11404 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
241179ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
242228, 205, 241ltmuldiv2d 13099 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥 ↔ ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
243240, 242mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
244204, 229, 205, 235, 243lttrd 11407 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
245202, 204, 205, 224, 244lelttrd 11404 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
246193, 201, 245syl2anc 582 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
247192, 246pm2.61dan 811 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
248184, 247pm2.61dan 811 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
249106, 248eqbrtrd 5171 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
250249ralrimiva 3135 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
251 fveq2 6896 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑆𝑘) = (𝑆𝐾))
252251oveq2d 7435 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑆𝑖) − (𝑆𝑘)) = ((𝑆𝑖) − (𝑆𝐾)))
253252fveq2d 6900 . . . . . . 7 (𝑘 = 𝐾 → (abs‘((𝑆𝑖) − (𝑆𝑘))) = (abs‘((𝑆𝑖) − (𝑆𝐾))))
254253breq1d 5159 . . . . . 6 (𝑘 = 𝐾 → ((abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
255167, 254raleqbidv 3329 . . . . 5 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
256255rspcev 3606 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
25790, 250, 256syl2anc 582 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
258257ralrimiva 3135 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
2591, 10, 258caurcvg 15659 1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  wss 3944  c0 4322   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  wf 6545  cfv 6549  (class class class)co 7419  supcsup 9465  infcinf 9466  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  *cxr 11279   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  2c2 12300  cz 12591  cuz 12855  +crp 13009  (,)cioo 13359  abscabs 15217  lim supclsp 15450  cli 15464  cnccncf 24840   D cdv 25836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840
This theorem is referenced by:  ioodvbdlimc1lem2  45455  ioodvbdlimc2lem  45457
  Copyright terms: Public domain W3C validator