| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. 2
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 2 | | ioodvbdlimc1lem1.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
| 3 | | cncff 24842 |
. . . . . 6
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 6 | | ioodvbdlimc1lem1.r |
. . . . 5
⊢ (𝜑 → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
| 7 | 6 | ffvelcdmda 7079 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑅‘𝑗) ∈ (𝐴(,)𝐵)) |
| 8 | 5, 7 | ffvelcdmd 7080 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝑅‘𝑗)) ∈ ℝ) |
| 9 | | ioodvbdlimc1lem1.s |
. . 3
⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) |
| 10 | 8, 9 | fmptd 7109 |
. 2
⊢ (𝜑 → 𝑆:(ℤ≥‘𝑀)⟶ℝ) |
| 11 | | ssrab2 4060 |
. . . . 5
⊢ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆
(ℤ≥‘𝑀) |
| 12 | | ioodvbdlimc1lem1.k |
. . . . . 6
⊢ 𝐾 = inf({𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, <
) |
| 13 | | rpre 13022 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 14 | 13 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
| 15 | | 2fveq3 6886 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
| 16 | 15 | cbvmptv 5230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 17 | 16 | rneqi 5922 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 18 | 17 | supeq1i 9464 |
. . . . . . . . . . . . . 14
⊢ sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
| 19 | | ioodvbdlimc1lem1.a |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 20 | | ioodvbdlimc1lem1.b |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 21 | | ioodvbdlimc1lem1.altb |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 < 𝐵) |
| 22 | | ioomidp 45510 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
| 23 | 19, 20, 21, 22 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
| 24 | 23 | ne0d 4322 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴(,)𝐵) ≠ ∅) |
| 25 | | ioossre 13429 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 27 | | dvfre 25912 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| 28 | 4, 26, 27 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| 29 | | ioodvbdlimc1lem1.dmdv |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 30 | 29 | feq2d 6697 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℝ)) |
| 31 | 28, 30 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ) |
| 32 | | ax-resscn 11191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℝ
⊆ ℂ |
| 33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 34 | 31, 33 | fssd 6728 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
| 35 | 34 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
| 36 | 35 | abscld 15460 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ) |
| 37 | | ioodvbdlimc1lem1.dvbd |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
| 38 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 39 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ sup(ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
| 40 | 24, 36, 37, 38, 39 | suprnmpt 45165 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧
∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))) |
| 41 | 40 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈
ℝ) |
| 42 | 18, 41 | eqeltrid 2839 |
. . . . . . . . . . . . 13
⊢ (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 44 | | peano2re 11413 |
. . . . . . . . . . . 12
⊢ (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ →
(sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 46 | | 0red 11243 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℝ) |
| 47 | | 1red 11241 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℝ) |
| 48 | 46, 47 | readdcld 11269 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ∈
ℝ) |
| 49 | 42, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 50 | 46 | ltp1d 12177 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (0 +
1)) |
| 51 | 34, 23 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
| 52 | 51 | abscld 15460 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
| 53 | 51 | absge0d 15468 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
| 54 | 40 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
| 55 | | 2fveq3 6886 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
| 56 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
| 57 | 55, 56 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔
(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))) |
| 58 | 57 | cbvralvw 3224 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
(𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
| 59 | 54, 58 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 60 | | 2fveq3 6886 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
| 61 | 60 | breq1d 5134 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))) |
| 62 | 61 | rspcva 3604 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) →
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 63 | 23, 59, 62 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 64 | 46, 52, 42, 53, 63 | letrd 11397 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 65 | 46, 42, 47, 64 | leadd1dd 11856 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ≤ (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 66 | 46, 48, 49, 50, 65 | ltletrd 11400 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 67 | 66 | gt0ne0d 11806 |
. . . . . . . . . . . 12
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠
0) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠
0) |
| 69 | 14, 45, 68 | redivcld 12074 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
| 70 | | rpgt0 13026 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 0 < 𝑥) |
| 71 | 70 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
𝑥) |
| 72 | 66 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
(sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 73 | 14, 45, 71, 72 | divgt0d 12182 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
(𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 74 | 69, 73 | elrpd 13053 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ+) |
| 75 | | ioodvbdlimc1lem1.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 76 | 75 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
| 77 | | ioodvbdlimc1lem1.rcnv |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ dom ⇝ ) |
| 78 | 77 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝
) |
| 79 | 1 | climcau 15692 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) →
∀𝑤 ∈
ℝ+ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) |
| 80 | 76, 78, 79 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑤 ∈
ℝ+ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) |
| 81 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) →
((abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤 ↔ (abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 82 | 81 | rexralbidv 3211 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) →
(∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 83 | 82 | rspcva 3604 |
. . . . . . . . 9
⊢ (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ+ ∧ ∀𝑤 ∈ ℝ+ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 84 | 74, 80, 83 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 85 | | rabn0 4369 |
. . . . . . . 8
⊢ ({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅
↔ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 86 | 84, 85 | sylibr 234 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠
∅) |
| 87 | | infssuzcl 12953 |
. . . . . . 7
⊢ (({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆
(ℤ≥‘𝑀) ∧ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
→ inf({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
∈ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
| 88 | 11, 86, 87 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
inf({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
∈ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
| 89 | 12, 88 | eqeltrid 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
| 90 | 11, 89 | sselid 3961 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐾 ∈
(ℤ≥‘𝑀)) |
| 91 | | 2fveq3 6886 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝑖))) |
| 92 | | uzss 12880 |
. . . . . . . . . . 11
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑀)) |
| 93 | 90, 92 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑀)) |
| 94 | 93 | sselda 3963 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 95 | 4 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 96 | 6 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
| 97 | 96, 94 | ffvelcdmd 7080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) |
| 98 | 95, 97 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℝ) |
| 99 | 9, 91, 94, 98 | fvmptd3 7014 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑆‘𝑖) = (𝐹‘(𝑅‘𝑖))) |
| 100 | | 2fveq3 6886 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝐾))) |
| 101 | 90 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 102 | 96, 101 | ffvelcdmd 7080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
| 103 | 95, 102 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℝ) |
| 104 | 9, 100, 101, 103 | fvmptd3 7014 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑆‘𝐾) = (𝐹‘(𝑅‘𝐾))) |
| 105 | 99, 104 | oveq12d 7428 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑆‘𝑖) − (𝑆‘𝐾)) = ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) |
| 106 | 105 | fveq2d 6885 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) = (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))))) |
| 107 | 98 | recnd 11268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℂ) |
| 108 | 103 | recnd 11268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℂ) |
| 109 | 107, 108 | subcld 11599 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) ∈ ℂ) |
| 110 | 109 | abscld 15460 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
| 111 | 110 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
| 112 | 42 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 113 | 112 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 114 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
| 115 | 114, 90 | ffvelcdmd 7080 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
| 116 | 25, 115 | sselid 3961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈ ℝ) |
| 117 | 116 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
| 118 | 25, 97 | sselid 3961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
| 119 | 118 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
| 120 | 117, 119 | resubcld 11670 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ∈ ℝ) |
| 121 | 113, 120 | remulcld 11270 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∈ ℝ) |
| 122 | 13 | ad3antlr 731 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝑥 ∈ ℝ) |
| 123 | 107 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℂ) |
| 124 | 108 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℂ) |
| 125 | 123, 124 | abssubd 15477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) = (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖))))) |
| 126 | 19 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐴 ∈ ℝ) |
| 127 | 20 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐵 ∈ ℝ) |
| 128 | 95 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 129 | 29 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 130 | 59 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 131 | 97 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) |
| 132 | 118 | rexrd 11290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈
ℝ*) |
| 133 | 132 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈
ℝ*) |
| 134 | 20 | rexrd 11290 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 135 | 134 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐵 ∈
ℝ*) |
| 136 | 135 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐵 ∈
ℝ*) |
| 137 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) < (𝑅‘𝐾)) |
| 138 | 19 | rexrd 11290 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 139 | 138 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈
ℝ*) |
| 140 | 134 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈
ℝ*) |
| 141 | | iooltub 45506 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) → (𝑅‘𝐾) < 𝐵) |
| 142 | 139, 140,
115, 141 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) < 𝐵) |
| 143 | 142 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) < 𝐵) |
| 144 | 133, 136,
117, 137, 143 | eliood 45494 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ((𝑅‘𝑖)(,)𝐵)) |
| 145 | 126, 127,
128, 129, 113, 130, 131, 144 | dvbdfbdioolem1 45924 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∧ (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵 − 𝐴)))) |
| 146 | 145 | simpld 494 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 147 | 125, 146 | eqbrtrd 5146 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 148 | 113, 44 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 149 | 148, 120 | remulcld 11270 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∈ ℝ) |
| 150 | 119, 117 | posdifd 11829 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝑖) < (𝑅‘𝐾) ↔ 0 < ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 151 | 137, 150 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 0 < ((𝑅‘𝐾) − (𝑅‘𝑖))) |
| 152 | 120, 151 | elrpd 13053 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ∈
ℝ+) |
| 153 | 113 | ltp1d 12177 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 154 | 113, 148,
152, 153 | ltmul1dd 13111 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 155 | 25, 102 | sselid 3961 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
| 156 | 118, 155 | resubcld 11670 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℝ) |
| 157 | 156 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℂ) |
| 158 | 157 | abscld 15460 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 159 | 158 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 160 | 69 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
| 161 | 120 | leabsd 15438 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ≤ (abs‘((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 162 | 117 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℂ) |
| 163 | 118 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ ℂ) |
| 164 | 163 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℂ) |
| 165 | 162, 164 | abssubd 15477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝐾) − (𝑅‘𝑖))) = (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 166 | 161, 165 | breqtrd 5150 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ≤ (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 167 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐾 → (ℤ≥‘𝑘) =
(ℤ≥‘𝐾)) |
| 168 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝐾 → (𝑅‘𝑘) = (𝑅‘𝐾)) |
| 169 | 168 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝐾 → ((𝑅‘𝑖) − (𝑅‘𝑘)) = ((𝑅‘𝑖) − (𝑅‘𝐾))) |
| 170 | 169 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝐾 → (abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) = (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 171 | 170 | breq1d 5134 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐾 → ((abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 172 | 167, 171 | raleqbidv 3329 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 173 | 172 | elrab 3676 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 174 | 89, 173 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 175 | 174 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 176 | 175 | r19.21bi 3238 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 177 | 176 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 178 | 120, 159,
160, 166, 177 | lelttrd 11398 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 179 | 49, 66 | elrpd 13053 |
. . . . . . . . . . . 12
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
| 180 | 179 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
| 181 | 120, 122,
180 | ltmuldiv2d 13104 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥 ↔ ((𝑅‘𝐾) − (𝑅‘𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 182 | 178, 181 | mpbird 257 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥) |
| 183 | 121, 149,
122, 154, 182 | lttrd 11401 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥) |
| 184 | 111, 121,
122, 147, 183 | lelttrd 11398 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 185 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑖) = (𝑅‘𝐾) → (𝐹‘(𝑅‘𝑖)) = (𝐹‘(𝑅‘𝐾))) |
| 186 | 185 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑖) = (𝑅‘𝐾) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) = ((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝐾)))) |
| 187 | 108 | subidd 11587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝐾))) = 0) |
| 188 | 186, 187 | sylan9eqr 2793 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) = 0) |
| 189 | 188 | abs00bd 15315 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) = 0) |
| 190 | 70 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → 0 < 𝑥) |
| 191 | 189, 190 | eqbrtrd 5146 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 192 | 191 | adantlr 715 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 193 | | simpll 766 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → ((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾))) |
| 194 | 155 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
| 195 | 118 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
| 196 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝐾) = (𝑅‘𝑖) → (𝑅‘𝐾) = (𝑅‘𝑖)) |
| 197 | 196 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝐾) = (𝑅‘𝑖) → (𝑅‘𝑖) = (𝑅‘𝐾)) |
| 198 | 197 | necon3bi 2959 |
. . . . . . . . . . 11
⊢ (¬
(𝑅‘𝑖) = (𝑅‘𝐾) → (𝑅‘𝐾) ≠ (𝑅‘𝑖)) |
| 199 | 198 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) ≠ (𝑅‘𝑖)) |
| 200 | | simplr 768 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) |
| 201 | 194, 195,
199, 200 | lttri5d 45295 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) < (𝑅‘𝑖)) |
| 202 | 110 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
| 203 | 112, 156 | remulcld 11270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 204 | 203 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 205 | 13 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝑥 ∈ ℝ) |
| 206 | 19 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐴 ∈ ℝ) |
| 207 | 20 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐵 ∈ ℝ) |
| 208 | 95 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 209 | 29 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 210 | 42 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 211 | 59 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 212 | 102 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
| 213 | 116 | rexrd 11290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈
ℝ*) |
| 214 | 213 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈
ℝ*) |
| 215 | 207 | rexrd 11290 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐵 ∈
ℝ*) |
| 216 | 118 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) ∈ ℝ) |
| 217 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) < (𝑅‘𝑖)) |
| 218 | 138 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐴 ∈
ℝ*) |
| 219 | | iooltub 45506 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) → (𝑅‘𝑖) < 𝐵) |
| 220 | 218, 135,
97, 219 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) < 𝐵) |
| 221 | 220 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) < 𝐵) |
| 222 | 214, 215,
216, 217, 221 | eliood 45494 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) ∈ ((𝑅‘𝐾)(,)𝐵)) |
| 223 | 206, 207,
208, 209, 210, 211, 212, 222 | dvbdfbdioolem1 45924 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∧ (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵 − 𝐴)))) |
| 224 | 223 | simpld 494 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 225 | | 1red 11241 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 1 ∈ ℝ) |
| 226 | 210, 225 | readdcld 11269 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 227 | 155 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈ ℝ) |
| 228 | 216, 227 | resubcld 11670 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℝ) |
| 229 | 226, 228 | remulcld 11270 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 230 | 210, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 231 | 227, 216 | posdifd 11829 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝐾) < (𝑅‘𝑖) ↔ 0 < ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 232 | 217, 231 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 0 < ((𝑅‘𝑖) − (𝑅‘𝐾))) |
| 233 | 228, 232 | elrpd 13053 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈
ℝ+) |
| 234 | 210 | ltp1d 12177 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 235 | 210, 230,
233, 234 | ltmul1dd 13111 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 236 | 158 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 237 | 69 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
| 238 | 228 | leabsd 15438 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ≤ (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 239 | 176 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 240 | 228, 236,
237, 238, 239 | lelttrd 11398 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 241 | 179 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
| 242 | 228, 205,
241 | ltmuldiv2d 13104 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥 ↔ ((𝑅‘𝑖) − (𝑅‘𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 243 | 240, 242 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥) |
| 244 | 204, 229,
205, 235, 243 | lttrd 11401 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥) |
| 245 | 202, 204,
205, 224, 244 | lelttrd 11398 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 246 | 193, 201,
245 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 247 | 192, 246 | pm2.61dan 812 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 248 | 184, 247 | pm2.61dan 812 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 249 | 106, 248 | eqbrtrd 5146 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) |
| 250 | 249 | ralrimiva 3133 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) |
| 251 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑆‘𝑘) = (𝑆‘𝐾)) |
| 252 | 251 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((𝑆‘𝑖) − (𝑆‘𝑘)) = ((𝑆‘𝑖) − (𝑆‘𝐾))) |
| 253 | 252 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) = (abs‘((𝑆‘𝑖) − (𝑆‘𝐾)))) |
| 254 | 253 | breq1d 5134 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥 ↔ (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥)) |
| 255 | 167, 254 | raleqbidv 3329 |
. . . . 5
⊢ (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥)) |
| 256 | 255 | rspcev 3606 |
. . . 4
⊢ ((𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
| 257 | 90, 250, 256 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
| 258 | 257 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
| 259 | 1, 10, 258 | caurcvg 15698 |
1
⊢ (𝜑 → 𝑆 ⇝ (lim sup‘𝑆)) |