Step | Hyp | Ref
| Expression |
1 | | eqid 2739 |
. 2
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
2 | | ioodvbdlimc1lem1.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
3 | | cncff 23657 |
. . . . . 6
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
5 | 4 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
6 | | ioodvbdlimc1lem1.r |
. . . . 5
⊢ (𝜑 → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
7 | 6 | ffvelrnda 6873 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑅‘𝑗) ∈ (𝐴(,)𝐵)) |
8 | 5, 7 | ffvelrnd 6874 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝑅‘𝑗)) ∈ ℝ) |
9 | | ioodvbdlimc1lem1.s |
. . 3
⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) |
10 | 8, 9 | fmptd 6900 |
. 2
⊢ (𝜑 → 𝑆:(ℤ≥‘𝑀)⟶ℝ) |
11 | | ssrab2 3979 |
. . . . 5
⊢ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆
(ℤ≥‘𝑀) |
12 | | ioodvbdlimc1lem1.k |
. . . . . 6
⊢ 𝐾 = inf({𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, <
) |
13 | | rpre 12492 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
14 | 13 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
15 | | 2fveq3 6691 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
16 | 15 | cbvmptv 5143 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
17 | 16 | rneqi 5790 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
18 | 17 | supeq1i 8996 |
. . . . . . . . . . . . . 14
⊢ sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
19 | | ioodvbdlimc1lem1.a |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ ℝ) |
20 | | ioodvbdlimc1lem1.b |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ ℝ) |
21 | | ioodvbdlimc1lem1.altb |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 < 𝐵) |
22 | | ioomidp 42632 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
23 | 19, 20, 21, 22 | syl3anc 1372 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
24 | 23 | ne0d 4234 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴(,)𝐵) ≠ ∅) |
25 | | ioossre 12894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴(,)𝐵) ⊆ ℝ |
26 | 25 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
27 | | dvfre 24715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
28 | 4, 26, 27 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
29 | | ioodvbdlimc1lem1.dmdv |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
30 | 29 | feq2d 6500 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℝ)) |
31 | 28, 30 | mpbid 235 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ) |
32 | | ax-resscn 10684 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℝ
⊆ ℂ |
33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℝ ⊆
ℂ) |
34 | 31, 33 | fssd 6532 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
35 | 34 | ffvelrnda 6873 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
36 | 35 | abscld 14898 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ) |
37 | | ioodvbdlimc1lem1.dvbd |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
38 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
39 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢ sup(ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
40 | 24, 36, 37, 38, 39 | suprnmpt 42288 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧
∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))) |
41 | 40 | simpld 498 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈
ℝ) |
42 | 18, 41 | eqeltrid 2838 |
. . . . . . . . . . . . 13
⊢ (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
43 | 42 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
44 | | peano2re 10903 |
. . . . . . . . . . . 12
⊢ (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ →
(sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
46 | | 0red 10734 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℝ) |
47 | | 1red 10732 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℝ) |
48 | 46, 47 | readdcld 10760 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ∈
ℝ) |
49 | 42, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
50 | 46 | ltp1d 11660 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (0 +
1)) |
51 | 34, 23 | ffvelrnd 6874 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
52 | 51 | abscld 14898 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
53 | 51 | absge0d 14906 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
54 | 40 | simprd 499 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
55 | | 2fveq3 6691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
56 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
57 | 55, 56 | breq12d 5053 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔
(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))) |
58 | 57 | cbvralvw 3350 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
(𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
59 | 54, 58 | sylibr 237 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
60 | | 2fveq3 6691 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
61 | 60 | breq1d 5050 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))) |
62 | 61 | rspcva 3527 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) →
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
63 | 23, 59, 62 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
64 | 46, 52, 42, 53, 63 | letrd 10887 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
65 | 46, 42, 47, 64 | leadd1dd 11344 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ≤ (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
66 | 46, 48, 49, 50, 65 | ltletrd 10890 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
67 | 66 | gt0ne0d 11294 |
. . . . . . . . . . . 12
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠
0) |
68 | 67 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠
0) |
69 | 14, 45, 68 | redivcld 11558 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
70 | | rpgt0 12496 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 0 < 𝑥) |
71 | 70 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
𝑥) |
72 | 66 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
(sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
73 | 14, 45, 71, 72 | divgt0d 11665 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
(𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
74 | 69, 73 | elrpd 12523 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ+) |
75 | | ioodvbdlimc1lem1.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
76 | 75 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
77 | | ioodvbdlimc1lem1.rcnv |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ dom ⇝ ) |
78 | 77 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝
) |
79 | 1 | climcau 15132 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) →
∀𝑤 ∈
ℝ+ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) |
80 | 76, 78, 79 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑤 ∈
ℝ+ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) |
81 | | breq2 5044 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) →
((abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤 ↔ (abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
82 | 81 | rexralbidv 3212 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) →
(∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
83 | 82 | rspcva 3527 |
. . . . . . . . 9
⊢ (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ+ ∧ ∀𝑤 ∈ ℝ+ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
84 | 74, 80, 83 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
85 | | rabn0 4284 |
. . . . . . . 8
⊢ ({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅
↔ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
86 | 84, 85 | sylibr 237 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠
∅) |
87 | | infssuzcl 12426 |
. . . . . . 7
⊢ (({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆
(ℤ≥‘𝑀) ∧ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
→ inf({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
∈ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
88 | 11, 86, 87 | sylancr 590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
inf({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
∈ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
89 | 12, 88 | eqeltrid 2838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
90 | 11, 89 | sseldi 3885 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐾 ∈
(ℤ≥‘𝑀)) |
91 | | 2fveq3 6691 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝑖))) |
92 | | uzss 12359 |
. . . . . . . . . . 11
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑀)) |
93 | 90, 92 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑀)) |
94 | 93 | sselda 3887 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
95 | 4 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
96 | 6 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
97 | 96, 94 | ffvelrnd 6874 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) |
98 | 95, 97 | ffvelrnd 6874 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℝ) |
99 | 9, 91, 94, 98 | fvmptd3 6810 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑆‘𝑖) = (𝐹‘(𝑅‘𝑖))) |
100 | | 2fveq3 6691 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝐾))) |
101 | 90 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
102 | 96, 101 | ffvelrnd 6874 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
103 | 95, 102 | ffvelrnd 6874 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℝ) |
104 | 9, 100, 101, 103 | fvmptd3 6810 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑆‘𝐾) = (𝐹‘(𝑅‘𝐾))) |
105 | 99, 104 | oveq12d 7200 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑆‘𝑖) − (𝑆‘𝐾)) = ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) |
106 | 105 | fveq2d 6690 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) = (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))))) |
107 | 98 | recnd 10759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℂ) |
108 | 103 | recnd 10759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℂ) |
109 | 107, 108 | subcld 11087 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) ∈ ℂ) |
110 | 109 | abscld 14898 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
111 | 110 | adantr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
112 | 42 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
113 | 112 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
114 | 6 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
115 | 114, 90 | ffvelrnd 6874 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
116 | 25, 115 | sseldi 3885 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈ ℝ) |
117 | 116 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
118 | 25, 97 | sseldi 3885 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
119 | 118 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
120 | 117, 119 | resubcld 11158 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ∈ ℝ) |
121 | 113, 120 | remulcld 10761 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∈ ℝ) |
122 | 13 | ad3antlr 731 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝑥 ∈ ℝ) |
123 | 107 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℂ) |
124 | 108 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℂ) |
125 | 123, 124 | abssubd 14915 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) = (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖))))) |
126 | 19 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐴 ∈ ℝ) |
127 | 20 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐵 ∈ ℝ) |
128 | 95 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
129 | 29 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
130 | 59 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
131 | 97 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) |
132 | 118 | rexrd 10781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈
ℝ*) |
133 | 132 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈
ℝ*) |
134 | 20 | rexrd 10781 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
135 | 134 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐵 ∈
ℝ*) |
136 | 135 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐵 ∈
ℝ*) |
137 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) < (𝑅‘𝐾)) |
138 | 19 | rexrd 10781 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
139 | 138 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈
ℝ*) |
140 | 134 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈
ℝ*) |
141 | | iooltub 42628 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) → (𝑅‘𝐾) < 𝐵) |
142 | 139, 140,
115, 141 | syl3anc 1372 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) < 𝐵) |
143 | 142 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) < 𝐵) |
144 | 133, 136,
117, 137, 143 | eliood 42616 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ((𝑅‘𝑖)(,)𝐵)) |
145 | 126, 127,
128, 129, 113, 130, 131, 144 | dvbdfbdioolem1 43051 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∧ (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵 − 𝐴)))) |
146 | 145 | simpld 498 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
147 | 125, 146 | eqbrtrd 5062 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
148 | 113, 44 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
149 | 148, 120 | remulcld 10761 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∈ ℝ) |
150 | 119, 117 | posdifd 11317 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝑖) < (𝑅‘𝐾) ↔ 0 < ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
151 | 137, 150 | mpbid 235 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 0 < ((𝑅‘𝐾) − (𝑅‘𝑖))) |
152 | 120, 151 | elrpd 12523 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ∈
ℝ+) |
153 | 113 | ltp1d 11660 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
154 | 113, 148,
152, 153 | ltmul1dd 12581 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
155 | 25, 102 | sseldi 3885 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
156 | 118, 155 | resubcld 11158 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℝ) |
157 | 156 | recnd 10759 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℂ) |
158 | 157 | abscld 14898 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
159 | 158 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
160 | 69 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
161 | 120 | leabsd 14876 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ≤ (abs‘((𝑅‘𝐾) − (𝑅‘𝑖)))) |
162 | 117 | recnd 10759 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℂ) |
163 | 118 | recnd 10759 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ ℂ) |
164 | 163 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℂ) |
165 | 162, 164 | abssubd 14915 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝐾) − (𝑅‘𝑖))) = (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
166 | 161, 165 | breqtrd 5066 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ≤ (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
167 | | fveq2 6686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐾 → (ℤ≥‘𝑘) =
(ℤ≥‘𝐾)) |
168 | | fveq2 6686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝐾 → (𝑅‘𝑘) = (𝑅‘𝐾)) |
169 | 168 | oveq2d 7198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝐾 → ((𝑅‘𝑖) − (𝑅‘𝑘)) = ((𝑅‘𝑖) − (𝑅‘𝐾))) |
170 | 169 | fveq2d 6690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝐾 → (abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) = (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
171 | 170 | breq1d 5050 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐾 → ((abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
172 | 167, 171 | raleqbidv 3305 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
173 | 172 | elrab 3593 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
174 | 89, 173 | sylib 221 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
175 | 174 | simprd 499 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
176 | 175 | r19.21bi 3122 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
177 | 176 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
178 | 120, 159,
160, 166, 177 | lelttrd 10888 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
179 | 49, 66 | elrpd 12523 |
. . . . . . . . . . . 12
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
180 | 179 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
181 | 120, 122,
180 | ltmuldiv2d 12574 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥 ↔ ((𝑅‘𝐾) − (𝑅‘𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
182 | 178, 181 | mpbird 260 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥) |
183 | 121, 149,
122, 154, 182 | lttrd 10891 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥) |
184 | 111, 121,
122, 147, 183 | lelttrd 10888 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
185 | | fveq2 6686 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑖) = (𝑅‘𝐾) → (𝐹‘(𝑅‘𝑖)) = (𝐹‘(𝑅‘𝐾))) |
186 | 185 | oveq1d 7197 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑖) = (𝑅‘𝐾) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) = ((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝐾)))) |
187 | 108 | subidd 11075 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝐾))) = 0) |
188 | 186, 187 | sylan9eqr 2796 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) = 0) |
189 | 188 | abs00bd 14753 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) = 0) |
190 | 70 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → 0 < 𝑥) |
191 | 189, 190 | eqbrtrd 5062 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
192 | 191 | adantlr 715 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
193 | | simpll 767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → ((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾))) |
194 | 155 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
195 | 118 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
196 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝐾) = (𝑅‘𝑖) → (𝑅‘𝐾) = (𝑅‘𝑖)) |
197 | 196 | eqcomd 2745 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝐾) = (𝑅‘𝑖) → (𝑅‘𝑖) = (𝑅‘𝐾)) |
198 | 197 | necon3bi 2961 |
. . . . . . . . . . 11
⊢ (¬
(𝑅‘𝑖) = (𝑅‘𝐾) → (𝑅‘𝐾) ≠ (𝑅‘𝑖)) |
199 | 198 | adantl 485 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) ≠ (𝑅‘𝑖)) |
200 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) |
201 | 194, 195,
199, 200 | lttri5d 42416 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) < (𝑅‘𝑖)) |
202 | 110 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
203 | 112, 156 | remulcld 10761 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
204 | 203 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
205 | 13 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝑥 ∈ ℝ) |
206 | 19 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐴 ∈ ℝ) |
207 | 20 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐵 ∈ ℝ) |
208 | 95 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
209 | 29 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
210 | 42 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
211 | 59 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
212 | 102 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
213 | 116 | rexrd 10781 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈
ℝ*) |
214 | 213 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈
ℝ*) |
215 | 207 | rexrd 10781 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐵 ∈
ℝ*) |
216 | 118 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) ∈ ℝ) |
217 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) < (𝑅‘𝑖)) |
218 | 138 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐴 ∈
ℝ*) |
219 | | iooltub 42628 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) → (𝑅‘𝑖) < 𝐵) |
220 | 218, 135,
97, 219 | syl3anc 1372 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) < 𝐵) |
221 | 220 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) < 𝐵) |
222 | 214, 215,
216, 217, 221 | eliood 42616 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) ∈ ((𝑅‘𝐾)(,)𝐵)) |
223 | 206, 207,
208, 209, 210, 211, 212, 222 | dvbdfbdioolem1 43051 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∧ (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵 − 𝐴)))) |
224 | 223 | simpld 498 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
225 | | 1red 10732 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 1 ∈ ℝ) |
226 | 210, 225 | readdcld 10760 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
227 | 155 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈ ℝ) |
228 | 216, 227 | resubcld 11158 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℝ) |
229 | 226, 228 | remulcld 10761 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
230 | 210, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
231 | 227, 216 | posdifd 11317 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝐾) < (𝑅‘𝑖) ↔ 0 < ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
232 | 217, 231 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 0 < ((𝑅‘𝑖) − (𝑅‘𝐾))) |
233 | 228, 232 | elrpd 12523 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈
ℝ+) |
234 | 210 | ltp1d 11660 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
235 | 210, 230,
233, 234 | ltmul1dd 12581 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
236 | 158 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
237 | 69 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
238 | 228 | leabsd 14876 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ≤ (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
239 | 176 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
240 | 228, 236,
237, 238, 239 | lelttrd 10888 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
241 | 179 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
242 | 228, 205,
241 | ltmuldiv2d 12574 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥 ↔ ((𝑅‘𝑖) − (𝑅‘𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
243 | 240, 242 | mpbird 260 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥) |
244 | 204, 229,
205, 235, 243 | lttrd 10891 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥) |
245 | 202, 204,
205, 224, 244 | lelttrd 10888 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
246 | 193, 201,
245 | syl2anc 587 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
247 | 192, 246 | pm2.61dan 813 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
248 | 184, 247 | pm2.61dan 813 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
249 | 106, 248 | eqbrtrd 5062 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) |
250 | 249 | ralrimiva 3097 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) |
251 | | fveq2 6686 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑆‘𝑘) = (𝑆‘𝐾)) |
252 | 251 | oveq2d 7198 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((𝑆‘𝑖) − (𝑆‘𝑘)) = ((𝑆‘𝑖) − (𝑆‘𝐾))) |
253 | 252 | fveq2d 6690 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) = (abs‘((𝑆‘𝑖) − (𝑆‘𝐾)))) |
254 | 253 | breq1d 5050 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥 ↔ (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥)) |
255 | 167, 254 | raleqbidv 3305 |
. . . . 5
⊢ (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥)) |
256 | 255 | rspcev 3529 |
. . . 4
⊢ ((𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
257 | 90, 250, 256 | syl2anc 587 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
258 | 257 | ralrimiva 3097 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
259 | 1, 10, 258 | caurcvg 15138 |
1
⊢ (𝜑 → 𝑆 ⇝ (lim sup‘𝑆)) |