Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem1 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem1 45918
Description: If 𝐹 has bounded derivative on (𝐴(,)𝐵) then a sequence of points in its image converges to its lim sup. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem1.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem1.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem1.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
ioodvbdlimc1lem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem1.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem1.m (𝜑𝑀 ∈ ℤ)
ioodvbdlimc1lem1.r (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
ioodvbdlimc1lem1.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
ioodvbdlimc1lem1.rcnv (𝜑𝑅 ∈ dom ⇝ )
ioodvbdlimc1lem1.k 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
Assertion
Ref Expression
ioodvbdlimc1lem1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Distinct variable groups:   𝐴,𝑖,𝑘,𝑥,𝑧   𝑦,𝐴,𝑖,𝑥,𝑧   𝐵,𝑖,𝑘,𝑥,𝑧   𝑦,𝐵   𝑖,𝐹,𝑗,𝑥   𝑘,𝐹,𝑧   𝑦,𝐹   𝑖,𝐾,𝑗   𝑘,𝐾   𝑦,𝐾   𝑖,𝑀,𝑗,𝑥   𝑘,𝑀   𝑅,𝑖,𝑗   𝑅,𝑘   𝑦,𝑅   𝑆,𝑖,𝑘,𝑥   𝜑,𝑖,𝑗,𝑥   𝜑,𝑘   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑗)   𝐵(𝑗)   𝑅(𝑥,𝑧)   𝑆(𝑦,𝑧,𝑗)   𝐾(𝑥,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem ioodvbdlimc1lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . 2 (ℤ𝑀) = (ℤ𝑀)
2 ioodvbdlimc1lem1.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
3 cncff 24856 . . . . . 6 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
42, 3syl 17 . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
54adantr 480 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
6 ioodvbdlimc1lem1.r . . . . 5 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
76ffvelcdmda 7084 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) ∈ (𝐴(,)𝐵))
85, 7ffvelcdmd 7085 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝑅𝑗)) ∈ ℝ)
9 ioodvbdlimc1lem1.s . . 3 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
108, 9fmptd 7114 . 2 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
11 ssrab2 4060 . . . . 5 {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀)
12 ioodvbdlimc1lem1.k . . . . . 6 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
13 rpre 13025 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1413adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
15 2fveq3 6891 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥)))
1615cbvmptv 5235 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1716rneqi 5928 . . . . . . . . . . . . . . 15 ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1817supeq1i 9469 . . . . . . . . . . . . . 14 sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
19 ioodvbdlimc1lem1.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
20 ioodvbdlimc1lem1.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
21 ioodvbdlimc1lem1.altb . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝐵)
22 ioomidp 45499 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2319, 20, 21, 22syl3anc 1372 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2423ne0d 4322 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
25 ioossre 13430 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 25926 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
284, 26, 27syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
29 ioodvbdlimc1lem1.dmdv . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3029feq2d 6702 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3128, 30mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
32 ax-resscn 11194 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6733 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
3534ffvelcdmda 7084 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
3635abscld 15458 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
37 ioodvbdlimc1lem1.dvbd . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
38 eqid 2734 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
39 eqid 2734 . . . . . . . . . . . . . . . 16 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
4024, 36, 37, 38, 39suprnmpt 45151 . . . . . . . . . . . . . . 15 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
4140simpld 494 . . . . . . . . . . . . . 14 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
4218, 41eqeltrid 2837 . . . . . . . . . . . . 13 (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
4342adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
44 peano2re 11416 . . . . . . . . . . . 12 (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
4543, 44syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
46 0red 11246 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
47 1red 11244 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4846, 47readdcld 11272 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
4942, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
5046ltp1d 12180 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
5134, 23ffvelcdmd 7085 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
5251abscld 15458 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
5351absge0d 15466 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
5440simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
55 2fveq3 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥)))
5618a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5755, 56breq12d 5136 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
5857cbvralvw 3223 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
5954, 58sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
60 2fveq3 6891 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
6160breq1d 5133 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )))
6261rspcva 3603 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6323, 59, 62syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6446, 52, 42, 53, 63letrd 11400 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6546, 42, 47, 64leadd1dd 11859 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6646, 48, 49, 50, 65ltletrd 11403 . . . . . . . . . . . . 13 (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
6766gt0ne0d 11809 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6867adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
6914, 45, 68redivcld 12077 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
70 rpgt0 13029 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → 0 < 𝑥)
7170adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
7266adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
7314, 45, 71, 72divgt0d 12185 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 0 < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
7469, 73elrpd 13056 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+)
75 ioodvbdlimc1lem1.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7675adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
77 ioodvbdlimc1lem1.rcnv . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
7877adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝ )
791climcau 15690 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
8076, 78, 79syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
81 breq2 5127 . . . . . . . . . . 11 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8281rexralbidv 3210 . . . . . . . . . 10 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → (∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8382rspcva 3603 . . . . . . . . 9 (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+ ∧ ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8474, 80, 83syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
85 rabn0 4369 . . . . . . . 8 ({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅ ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8684, 85sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
87 infssuzcl 12956 . . . . . . 7 (({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀) ∧ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8811, 86, 87sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
8912, 88eqeltrid 2837 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
9011, 89sselid 3961 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ (ℤ𝑀))
91 2fveq3 6891 . . . . . . . . 9 (𝑗 = 𝑖 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝑖)))
92 uzss 12883 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
9390, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (ℤ𝐾) ⊆ (ℤ𝑀))
9493sselda 3963 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑖 ∈ (ℤ𝑀))
954ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
966ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
9796, 94ffvelcdmd 7085 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
9895, 97ffvelcdmd 7085 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℝ)
999, 91, 94, 98fvmptd3 7019 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝑖) = (𝐹‘(𝑅𝑖)))
100 2fveq3 6891 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝐾)))
10190adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
10296, 101ffvelcdmd 7085 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
10395, 102ffvelcdmd 7085 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℝ)
1049, 100, 101, 103fvmptd3 7019 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝐾) = (𝐹‘(𝑅𝐾)))
10599, 104oveq12d 7431 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑆𝑖) − (𝑆𝐾)) = ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))))
106105fveq2d 6890 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) = (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))))
10798recnd 11271 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
108103recnd 11271 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
109107, 108subcld 11602 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) ∈ ℂ)
110109abscld 15458 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
111110adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
11242ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
113112adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
1146adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
115114, 90ffvelcdmd 7085 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
11625, 115sselid 3961 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ)
117116ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
11825, 97sselid 3961 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ)
119118adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
120117, 119resubcld 11673 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ)
121113, 120remulcld 11273 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
12213ad3antlr 731 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝑥 ∈ ℝ)
123107adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
124108adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
125123, 124abssubd 15475 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))))
12619ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐴 ∈ ℝ)
12720ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ)
12895adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
12929ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
13059ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
13197adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
132118rexrd 11293 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ*)
133132adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ*)
13420rexrd 11293 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
135134ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐵 ∈ ℝ*)
136135adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ*)
137 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) < (𝑅𝐾))
13819rexrd 11293 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
139138adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
140134adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
141 iooltub 45495 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝐾) ∈ (𝐴(,)𝐵)) → (𝑅𝐾) < 𝐵)
142139, 140, 115, 141syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) < 𝐵)
143142ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) < 𝐵)
144133, 136, 117, 137, 143eliood 45483 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ((𝑅𝑖)(,)𝐵))
145126, 127, 128, 129, 113, 130, 131, 144dvbdfbdioolem1 45915 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∧ (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
146145simpld 494 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
147125, 146eqbrtrd 5145 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
148113, 44syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
149148, 120remulcld 11273 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
150119, 117posdifd 11832 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝑖) < (𝑅𝐾) ↔ 0 < ((𝑅𝐾) − (𝑅𝑖))))
151137, 150mpbid 232 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 0 < ((𝑅𝐾) − (𝑅𝑖)))
152120, 151elrpd 13056 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ+)
153113ltp1d 12180 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
154113, 148, 152, 153ltmul1dd 13114 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))))
15525, 102sselid 3961 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ ℝ)
156118, 155resubcld 11673 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
157156recnd 11271 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℂ)
158157abscld 15458 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
159158adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
16069ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
161120leabsd 15436 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝐾) − (𝑅𝑖))))
162117recnd 11271 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℂ)
163118recnd 11271 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℂ)
164163adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℂ)
165162, 164abssubd 15475 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝐾) − (𝑅𝑖))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
166161, 165breqtrd 5149 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
167 fveq2 6886 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → (ℤ𝑘) = (ℤ𝐾))
168 fveq2 6886 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐾 → (𝑅𝑘) = (𝑅𝐾))
169168oveq2d 7429 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐾 → ((𝑅𝑖) − (𝑅𝑘)) = ((𝑅𝑖) − (𝑅𝐾)))
170169fveq2d 6890 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐾 → (abs‘((𝑅𝑖) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
171170breq1d 5133 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
172167, 171raleqbidv 3329 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
173172elrab 3675 . . . . . . . . . . . . . . 15 (𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
17489, 173sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
175174simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
176175r19.21bi 3237 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
177176adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
178120, 159, 160, 166, 177lelttrd 11401 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
17949, 66elrpd 13056 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
180179ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
181120, 122, 180ltmuldiv2d 13107 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥 ↔ ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
182178, 181mpbird 257 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
183121, 149, 122, 154, 182lttrd 11404 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
184111, 121, 122, 147, 183lelttrd 11401 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
185 fveq2 6886 . . . . . . . . . . . . 13 ((𝑅𝑖) = (𝑅𝐾) → (𝐹‘(𝑅𝑖)) = (𝐹‘(𝑅𝐾)))
186185oveq1d 7428 . . . . . . . . . . . 12 ((𝑅𝑖) = (𝑅𝐾) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))))
187108subidd 11590 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))) = 0)
188186, 187sylan9eqr 2791 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = 0)
189188abs00bd 15313 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = 0)
19070ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → 0 < 𝑥)
191189, 190eqbrtrd 5145 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
192191adantlr 715 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
193 simpll 766 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)))
194155ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
195118ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
196 id 22 . . . . . . . . . . . . 13 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝐾) = (𝑅𝑖))
197196eqcomd 2740 . . . . . . . . . . . 12 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝑖) = (𝑅𝐾))
198197necon3bi 2957 . . . . . . . . . . 11 (¬ (𝑅𝑖) = (𝑅𝐾) → (𝑅𝐾) ≠ (𝑅𝑖))
199198adantl 481 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ≠ (𝑅𝑖))
200 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ¬ (𝑅𝑖) < (𝑅𝐾))
201194, 195, 199, 200lttri5d 45283 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) < (𝑅𝑖))
202110adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
203112, 156remulcld 11273 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
204203adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
20513ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝑥 ∈ ℝ)
20619ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐴 ∈ ℝ)
20720ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ)
20895adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
20929ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
21042ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
21159ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
212102adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
213116rexrd 11293 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ*)
214213ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ*)
215207rexrd 11293 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ*)
216118adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ℝ)
217 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) < (𝑅𝑖))
218138ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐴 ∈ ℝ*)
219 iooltub 45495 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝑖) ∈ (𝐴(,)𝐵)) → (𝑅𝑖) < 𝐵)
220218, 135, 97, 219syl3anc 1372 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) < 𝐵)
221220adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) < 𝐵)
222214, 215, 216, 217, 221eliood 45483 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ((𝑅𝐾)(,)𝐵))
223206, 207, 208, 209, 210, 211, 212, 222dvbdfbdioolem1 45915 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∧ (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
224223simpld 494 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))))
225 1red 11244 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 1 ∈ ℝ)
226210, 225readdcld 11272 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
227155adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ)
228216, 227resubcld 11673 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
229226, 228remulcld 11273 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
230210, 44syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
231227, 216posdifd 11832 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝐾) < (𝑅𝑖) ↔ 0 < ((𝑅𝑖) − (𝑅𝐾))))
232217, 231mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 0 < ((𝑅𝑖) − (𝑅𝐾)))
233228, 232elrpd 13056 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ+)
234210ltp1d 12180 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
235210, 230, 233, 234ltmul1dd 13114 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))))
236158adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
23769ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
238228leabsd 15436 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
239176adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
240228, 236, 237, 238, 239lelttrd 11401 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
241179ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
242228, 205, 241ltmuldiv2d 13107 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥 ↔ ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
243240, 242mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
244204, 229, 205, 235, 243lttrd 11404 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
245202, 204, 205, 224, 244lelttrd 11401 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
246193, 201, 245syl2anc 584 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
247192, 246pm2.61dan 812 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
248184, 247pm2.61dan 812 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
249106, 248eqbrtrd 5145 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
250249ralrimiva 3133 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
251 fveq2 6886 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑆𝑘) = (𝑆𝐾))
252251oveq2d 7429 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑆𝑖) − (𝑆𝑘)) = ((𝑆𝑖) − (𝑆𝐾)))
253252fveq2d 6890 . . . . . . 7 (𝑘 = 𝐾 → (abs‘((𝑆𝑖) − (𝑆𝑘))) = (abs‘((𝑆𝑖) − (𝑆𝐾))))
254253breq1d 5133 . . . . . 6 (𝑘 = 𝐾 → ((abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
255167, 254raleqbidv 3329 . . . . 5 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
256255rspcev 3605 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
25790, 250, 256syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
258257ralrimiva 3133 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
2591, 10, 258caurcvg 15696 1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  {crab 3419  wss 3931  c0 4313   class class class wbr 5123  cmpt 5205  dom cdm 5665  ran crn 5666  wf 6537  cfv 6541  (class class class)co 7413  supcsup 9462  infcinf 9463  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  *cxr 11276   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  2c2 12303  cz 12596  cuz 12860  +crp 13016  (,)cioo 13369  abscabs 15256  lim supclsp 15489  cli 15503  cnccncf 24839   D cdv 25835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-lp 23091  df-perf 23092  df-cn 23182  df-cnp 23183  df-haus 23270  df-cmp 23342  df-tx 23517  df-hmeo 23710  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895  df-xms 24276  df-ms 24277  df-tms 24278  df-cncf 24841  df-limc 25838  df-dv 25839
This theorem is referenced by:  ioodvbdlimc1lem2  45919  ioodvbdlimc2lem  45921
  Copyright terms: Public domain W3C validator