Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumge0cl Structured version   Visualization version   GIF version

Theorem gsumge0cl 46376
Description: Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
gsumge0cl.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
gsumge0cl.2 (𝜑𝑋𝑉)
gsumge0cl.3 (𝜑𝐹:𝑋⟶(0[,]+∞))
gsumge0cl.4 (𝜑𝐹 finSupp 0)
Assertion
Ref Expression
gsumge0cl (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞))

Proof of Theorem gsumge0cl
StepHypRef Expression
1 iccssxr 13398 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 dfss2 3935 . . . . 5 ((0[,]+∞) ⊆ ℝ* ↔ ((0[,]+∞) ∩ ℝ*) = (0[,]+∞))
31, 2mpbi 230 . . . 4 ((0[,]+∞) ∩ ℝ*) = (0[,]+∞)
43eqcomi 2739 . . 3 (0[,]+∞) = ((0[,]+∞) ∩ ℝ*)
5 ovex 7423 . . . 4 (0[,]+∞) ∈ V
6 gsumge0cl.1 . . . . 5 𝐺 = (ℝ*𝑠s (0[,]+∞))
7 xrsbas 21302 . . . . 5 * = (Base‘ℝ*𝑠)
86, 7ressbas 17213 . . . 4 ((0[,]+∞) ∈ V → ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺))
95, 8ax-mp 5 . . 3 ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺)
104, 9eqtri 2753 . 2 (0[,]+∞) = (Base‘𝐺)
11 eqid 2730 . . . . . 6 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
1211xrs1cmn 21330 . . . . 5 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd
13 cmnmnd 19734 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd → (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd)
1412, 13ax-mp 5 . . . 4 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
15 xrge0cmn 21332 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
166, 15eqeltri 2825 . . . . 5 𝐺 ∈ CMnd
17 cmnmnd 19734 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17ax-mp 5 . . . 4 𝐺 ∈ Mnd
1914, 18pm3.2i 470 . . 3 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd)
20 eliccxr 13403 . . . . . . 7 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*)
21 mnfxr 11238 . . . . . . . . . 10 -∞ ∈ ℝ*
2221a1i 11 . . . . . . . . 9 (𝑥 ∈ (0[,]+∞) → -∞ ∈ ℝ*)
23 0xr 11228 . . . . . . . . . . 11 0 ∈ ℝ*
2423a1i 11 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → 0 ∈ ℝ*)
25 mnflt0 13092 . . . . . . . . . . 11 -∞ < 0
2625a1i 11 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → -∞ < 0)
27 pnfxr 11235 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0[,]+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . . 11 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (0[,]+∞))
30 iccgelb 13370 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (0[,]+∞)) → 0 ≤ 𝑥)
3124, 28, 29, 30syl3anc 1373 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → 0 ≤ 𝑥)
3222, 24, 20, 26, 31xrltletrd 13128 . . . . . . . . 9 (𝑥 ∈ (0[,]+∞) → -∞ < 𝑥)
3322, 20, 32xrgtned 45325 . . . . . . . 8 (𝑥 ∈ (0[,]+∞) → 𝑥 ≠ -∞)
34 nelsn 4633 . . . . . . . 8 (𝑥 ≠ -∞ → ¬ 𝑥 ∈ {-∞})
3533, 34syl 17 . . . . . . 7 (𝑥 ∈ (0[,]+∞) → ¬ 𝑥 ∈ {-∞})
3620, 35eldifd 3928 . . . . . 6 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
3736rgen 3047 . . . . 5 𝑥 ∈ (0[,]+∞)𝑥 ∈ (ℝ* ∖ {-∞})
38 dfss3 3938 . . . . 5 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ ∀𝑥 ∈ (0[,]+∞)𝑥 ∈ (ℝ* ∖ {-∞}))
3937, 38mpbir 231 . . . 4 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
40 0e0iccpnf 13427 . . . 4 0 ∈ (0[,]+∞)
4139, 40pm3.2i 470 . . 3 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))
42 difss 4102 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
4311, 7ressbas2 17215 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
4442, 43ax-mp 5 . . . 4 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
4511xrs10 21329 . . . 4 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
46 xrex 12953 . . . . . . 7 * ∈ V
47 difexg 5287 . . . . . . 7 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
4846, 47ax-mp 5 . . . . . 6 (ℝ* ∖ {-∞}) ∈ V
4941simpli 483 . . . . . 6 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
50 ressabs 17225 . . . . . 6 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
5148, 49, 50mp2an 692 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
526eqcomi 2739 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = 𝐺
5351, 52eqtr2i 2754 . . . 4 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
5444, 45, 53submnd0 18697 . . 3 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g𝐺))
5519, 41, 54mp2an 692 . 2 0 = (0g𝐺)
5616a1i 11 . 2 (𝜑𝐺 ∈ CMnd)
57 gsumge0cl.2 . 2 (𝜑𝑋𝑉)
58 gsumge0cl.3 . 2 (𝜑𝐹:𝑋⟶(0[,]+∞))
59 gsumge0cl.4 . 2 (𝜑𝐹 finSupp 0)
6010, 55, 56, 57, 58, 59gsumcl 19852 1 (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  cin 3916  wss 3917  {csn 4592   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390   finSupp cfsupp 9319  0cc0 11075  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  [,]cicc 13316  Basecbs 17186  s cress 17207  0gc0g 17409   Σg cgsu 17410  *𝑠cxrs 17470  Mndcmnd 18668  CMndccmn 19717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-xadd 13080  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-gsum 17412  df-xrs 17472  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-cntz 19256  df-cmn 19719
This theorem is referenced by:  sge0tsms  46385
  Copyright terms: Public domain W3C validator