Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumge0cl Structured version   Visualization version   GIF version

Theorem gsumge0cl 46417
Description: Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
gsumge0cl.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
gsumge0cl.2 (𝜑𝑋𝑉)
gsumge0cl.3 (𝜑𝐹:𝑋⟶(0[,]+∞))
gsumge0cl.4 (𝜑𝐹 finSupp 0)
Assertion
Ref Expression
gsumge0cl (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞))

Proof of Theorem gsumge0cl
StepHypRef Expression
1 iccssxr 13330 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 dfss2 3915 . . . . 5 ((0[,]+∞) ⊆ ℝ* ↔ ((0[,]+∞) ∩ ℝ*) = (0[,]+∞))
31, 2mpbi 230 . . . 4 ((0[,]+∞) ∩ ℝ*) = (0[,]+∞)
43eqcomi 2740 . . 3 (0[,]+∞) = ((0[,]+∞) ∩ ℝ*)
5 ovex 7379 . . . 4 (0[,]+∞) ∈ V
6 gsumge0cl.1 . . . . 5 𝐺 = (ℝ*𝑠s (0[,]+∞))
7 xrsbas 17510 . . . . 5 * = (Base‘ℝ*𝑠)
86, 7ressbas 17147 . . . 4 ((0[,]+∞) ∈ V → ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺))
95, 8ax-mp 5 . . 3 ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺)
104, 9eqtri 2754 . 2 (0[,]+∞) = (Base‘𝐺)
11 eqid 2731 . . . . . 6 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
1211xrs1cmn 21379 . . . . 5 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd
13 cmnmnd 19709 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd → (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd)
1412, 13ax-mp 5 . . . 4 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
15 xrge0cmn 21381 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
166, 15eqeltri 2827 . . . . 5 𝐺 ∈ CMnd
17 cmnmnd 19709 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17ax-mp 5 . . . 4 𝐺 ∈ Mnd
1914, 18pm3.2i 470 . . 3 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd)
20 eliccxr 13335 . . . . . . 7 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*)
21 mnfxr 11169 . . . . . . . . . 10 -∞ ∈ ℝ*
2221a1i 11 . . . . . . . . 9 (𝑥 ∈ (0[,]+∞) → -∞ ∈ ℝ*)
23 0xr 11159 . . . . . . . . . . 11 0 ∈ ℝ*
2423a1i 11 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → 0 ∈ ℝ*)
25 mnflt0 13024 . . . . . . . . . . 11 -∞ < 0
2625a1i 11 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → -∞ < 0)
27 pnfxr 11166 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0[,]+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . . 11 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (0[,]+∞))
30 iccgelb 13302 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (0[,]+∞)) → 0 ≤ 𝑥)
3124, 28, 29, 30syl3anc 1373 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → 0 ≤ 𝑥)
3222, 24, 20, 26, 31xrltletrd 13060 . . . . . . . . 9 (𝑥 ∈ (0[,]+∞) → -∞ < 𝑥)
3322, 20, 32xrgtned 45369 . . . . . . . 8 (𝑥 ∈ (0[,]+∞) → 𝑥 ≠ -∞)
34 nelsn 4616 . . . . . . . 8 (𝑥 ≠ -∞ → ¬ 𝑥 ∈ {-∞})
3533, 34syl 17 . . . . . . 7 (𝑥 ∈ (0[,]+∞) → ¬ 𝑥 ∈ {-∞})
3620, 35eldifd 3908 . . . . . 6 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
3736rgen 3049 . . . . 5 𝑥 ∈ (0[,]+∞)𝑥 ∈ (ℝ* ∖ {-∞})
38 dfss3 3918 . . . . 5 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ ∀𝑥 ∈ (0[,]+∞)𝑥 ∈ (ℝ* ∖ {-∞}))
3937, 38mpbir 231 . . . 4 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
40 0e0iccpnf 13359 . . . 4 0 ∈ (0[,]+∞)
4139, 40pm3.2i 470 . . 3 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))
42 difss 4083 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
4311, 7ressbas2 17149 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
4442, 43ax-mp 5 . . . 4 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
4511xrs10 21378 . . . 4 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
46 xrex 12885 . . . . . . 7 * ∈ V
47 difexg 5265 . . . . . . 7 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
4846, 47ax-mp 5 . . . . . 6 (ℝ* ∖ {-∞}) ∈ V
4941simpli 483 . . . . . 6 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
50 ressabs 17159 . . . . . 6 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
5148, 49, 50mp2an 692 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
526eqcomi 2740 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = 𝐺
5351, 52eqtr2i 2755 . . . 4 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
5444, 45, 53submnd0 18671 . . 3 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g𝐺))
5519, 41, 54mp2an 692 . 2 0 = (0g𝐺)
5616a1i 11 . 2 (𝜑𝐺 ∈ CMnd)
57 gsumge0cl.2 . 2 (𝜑𝑋𝑉)
58 gsumge0cl.3 . 2 (𝜑𝐹:𝑋⟶(0[,]+∞))
59 gsumge0cl.4 . 2 (𝜑𝐹 finSupp 0)
6010, 55, 56, 57, 58, 59gsumcl 19827 1 (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  cin 3896  wss 3897  {csn 4573   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346   finSupp cfsupp 9245  0cc0 11006  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  [,]cicc 13248  Basecbs 17120  s cress 17141  0gc0g 17343   Σg cgsu 17344  *𝑠cxrs 17404  Mndcmnd 18642  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-xadd 13012  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-gsum 17346  df-xrs 17406  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-cntz 19229  df-cmn 19694
This theorem is referenced by:  sge0tsms  46426
  Copyright terms: Public domain W3C validator