Proof of Theorem gsumge0cl
| Step | Hyp | Ref
| Expression |
| 1 | | iccssxr 13470 |
. . . . 5
⊢
(0[,]+∞) ⊆ ℝ* |
| 2 | | dfss2 3969 |
. . . . 5
⊢
((0[,]+∞) ⊆ ℝ* ↔ ((0[,]+∞) ∩
ℝ*) = (0[,]+∞)) |
| 3 | 1, 2 | mpbi 230 |
. . . 4
⊢
((0[,]+∞) ∩ ℝ*) =
(0[,]+∞) |
| 4 | 3 | eqcomi 2746 |
. . 3
⊢
(0[,]+∞) = ((0[,]+∞) ∩
ℝ*) |
| 5 | | ovex 7464 |
. . . 4
⊢
(0[,]+∞) ∈ V |
| 6 | | gsumge0cl.1 |
. . . . 5
⊢ 𝐺 =
(ℝ*𝑠 ↾s
(0[,]+∞)) |
| 7 | | xrsbas 21396 |
. . . . 5
⊢
ℝ* =
(Base‘ℝ*𝑠) |
| 8 | 6, 7 | ressbas 17280 |
. . . 4
⊢
((0[,]+∞) ∈ V → ((0[,]+∞) ∩
ℝ*) = (Base‘𝐺)) |
| 9 | 5, 8 | ax-mp 5 |
. . 3
⊢
((0[,]+∞) ∩ ℝ*) = (Base‘𝐺) |
| 10 | 4, 9 | eqtri 2765 |
. 2
⊢
(0[,]+∞) = (Base‘𝐺) |
| 11 | | eqid 2737 |
. . . . . 6
⊢
(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) =
(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) |
| 12 | 11 | xrs1cmn 21424 |
. . . . 5
⊢
(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ∈ CMnd |
| 13 | | cmnmnd 19815 |
. . . . 5
⊢
((ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ∈ CMnd →
(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ∈ Mnd) |
| 14 | 12, 13 | ax-mp 5 |
. . . 4
⊢
(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ∈ Mnd |
| 15 | | xrge0cmn 21426 |
. . . . . 6
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) ∈ CMnd |
| 16 | 6, 15 | eqeltri 2837 |
. . . . 5
⊢ 𝐺 ∈ CMnd |
| 17 | | cmnmnd 19815 |
. . . . 5
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 18 | 16, 17 | ax-mp 5 |
. . . 4
⊢ 𝐺 ∈ Mnd |
| 19 | 14, 18 | pm3.2i 470 |
. . 3
⊢
((ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd) |
| 20 | | eliccxr 13475 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,]+∞) →
𝑥 ∈
ℝ*) |
| 21 | | mnfxr 11318 |
. . . . . . . . . 10
⊢ -∞
∈ ℝ* |
| 22 | 21 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,]+∞) →
-∞ ∈ ℝ*) |
| 23 | | 0xr 11308 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
| 24 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]+∞) → 0
∈ ℝ*) |
| 25 | | mnflt0 13167 |
. . . . . . . . . . 11
⊢ -∞
< 0 |
| 26 | 25 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]+∞) →
-∞ < 0) |
| 27 | | pnfxr 11315 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
| 28 | 27 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,]+∞) →
+∞ ∈ ℝ*) |
| 29 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,]+∞) →
𝑥 ∈
(0[,]+∞)) |
| 30 | | iccgelb 13443 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝑥 ∈ (0[,]+∞))
→ 0 ≤ 𝑥) |
| 31 | 24, 28, 29, 30 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]+∞) → 0
≤ 𝑥) |
| 32 | 22, 24, 20, 26, 31 | xrltletrd 13203 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,]+∞) →
-∞ < 𝑥) |
| 33 | 22, 20, 32 | xrgtned 45333 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,]+∞) →
𝑥 ≠
-∞) |
| 34 | | nelsn 4666 |
. . . . . . . 8
⊢ (𝑥 ≠ -∞ → ¬
𝑥 ∈
{-∞}) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,]+∞) →
¬ 𝑥 ∈
{-∞}) |
| 36 | 20, 35 | eldifd 3962 |
. . . . . 6
⊢ (𝑥 ∈ (0[,]+∞) →
𝑥 ∈
(ℝ* ∖ {-∞})) |
| 37 | 36 | rgen 3063 |
. . . . 5
⊢
∀𝑥 ∈
(0[,]+∞)𝑥 ∈
(ℝ* ∖ {-∞}) |
| 38 | | dfss3 3972 |
. . . . 5
⊢
((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔
∀𝑥 ∈
(0[,]+∞)𝑥 ∈
(ℝ* ∖ {-∞})) |
| 39 | 37, 38 | mpbir 231 |
. . . 4
⊢
(0[,]+∞) ⊆ (ℝ* ∖
{-∞}) |
| 40 | | 0e0iccpnf 13499 |
. . . 4
⊢ 0 ∈
(0[,]+∞) |
| 41 | 39, 40 | pm3.2i 470 |
. . 3
⊢
((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0
∈ (0[,]+∞)) |
| 42 | | difss 4136 |
. . . . 5
⊢
(ℝ* ∖ {-∞}) ⊆
ℝ* |
| 43 | 11, 7 | ressbas2 17283 |
. . . . 5
⊢
((ℝ* ∖ {-∞}) ⊆ ℝ*
→ (ℝ* ∖ {-∞}) =
(Base‘(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})))) |
| 44 | 42, 43 | ax-mp 5 |
. . . 4
⊢
(ℝ* ∖ {-∞}) =
(Base‘(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞}))) |
| 45 | 11 | xrs10 21423 |
. . . 4
⊢ 0 =
(0g‘(ℝ*𝑠
↾s (ℝ* ∖ {-∞}))) |
| 46 | | xrex 13029 |
. . . . . . 7
⊢
ℝ* ∈ V |
| 47 | | difexg 5329 |
. . . . . . 7
⊢
(ℝ* ∈ V → (ℝ* ∖
{-∞}) ∈ V) |
| 48 | 46, 47 | ax-mp 5 |
. . . . . 6
⊢
(ℝ* ∖ {-∞}) ∈ V |
| 49 | 41 | simpli 483 |
. . . . . 6
⊢
(0[,]+∞) ⊆ (ℝ* ∖
{-∞}) |
| 50 | | ressabs 17294 |
. . . . . 6
⊢
(((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞)
⊆ (ℝ* ∖ {-∞})) →
((ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ↾s (0[,]+∞)) =
(ℝ*𝑠 ↾s
(0[,]+∞))) |
| 51 | 48, 49, 50 | mp2an 692 |
. . . . 5
⊢
((ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ↾s (0[,]+∞)) =
(ℝ*𝑠 ↾s
(0[,]+∞)) |
| 52 | 6 | eqcomi 2746 |
. . . . 5
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) = 𝐺 |
| 53 | 51, 52 | eqtr2i 2766 |
. . . 4
⊢ 𝐺 =
((ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ↾s
(0[,]+∞)) |
| 54 | 44, 45, 53 | submnd0 18776 |
. . 3
⊢
((((ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((0[,]+∞) ⊆
(ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) →
0 = (0g‘𝐺)) |
| 55 | 19, 41, 54 | mp2an 692 |
. 2
⊢ 0 =
(0g‘𝐺) |
| 56 | 16 | a1i 11 |
. 2
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 57 | | gsumge0cl.2 |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 58 | | gsumge0cl.3 |
. 2
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| 59 | | gsumge0cl.4 |
. 2
⊢ (𝜑 → 𝐹 finSupp 0) |
| 60 | 10, 55, 56, 57, 58, 59 | gsumcl 19933 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈
(0[,]+∞)) |