| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2eldif1 | Structured version Visualization version GIF version | ||
| Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
| Ref | Expression |
|---|---|
| pr2eldif1 | ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pren2 43542 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
| 2 | prid1g 4724 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ {𝐴, 𝐵}) |
| 4 | nelsn 4630 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → ¬ 𝐴 ∈ {𝐵}) |
| 6 | 3, 5 | eldifd 3925 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∖ cdif 3911 {csn 4589 {cpr 4591 class class class wbr 5107 2oc2o 8428 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1o 8434 df-2o 8435 df-en 8919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |