| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2eldif1 | Structured version Visualization version GIF version | ||
| Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
| Ref | Expression |
|---|---|
| pr2eldif1 | ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pren2 43552 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
| 2 | prid1g 4741 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ {𝐴, 𝐵}) |
| 4 | nelsn 4647 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → ¬ 𝐴 ∈ {𝐵}) |
| 6 | 3, 5 | eldifd 3942 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∖ cdif 3928 {csn 4606 {cpr 4608 class class class wbr 5124 2oc2o 8479 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1o 8485 df-2o 8486 df-en 8965 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |