Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2eldif1 Structured version   Visualization version   GIF version

Theorem pr2eldif1 43544
Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.)
Assertion
Ref Expression
pr2eldif1 ({𝐴, 𝐵} ≈ 2o𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵}))

Proof of Theorem pr2eldif1
StepHypRef Expression
1 pren2 43543 . 2 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))
2 prid1g 4765 . . . 4 (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵})
323ad2ant1 1132 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) → 𝐴 ∈ {𝐴, 𝐵})
4 nelsn 4671 . . . 4 (𝐴𝐵 → ¬ 𝐴 ∈ {𝐵})
543ad2ant3 1134 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) → ¬ 𝐴 ∈ {𝐵})
63, 5eldifd 3974 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵}))
71, 6sylbi 217 1 ({𝐴, 𝐵} ≈ 2o𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  {csn 4631  {cpr 4633   class class class wbr 5148  2oc2o 8499  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1o 8505  df-2o 8506  df-en 8985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator