![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnoddn2prmb | Structured version Visualization version GIF version |
Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
nnoddn2prmb | ⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4122 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ) | |
2 | oddn2prm 16766 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) |
4 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℙ) | |
5 | z2even 16332 | . . . . . . . 8 ⊢ 2 ∥ 2 | |
6 | breq2 5146 | . . . . . . . 8 ⊢ (𝑁 = 2 → (2 ∥ 𝑁 ↔ 2 ∥ 2)) | |
7 | 5, 6 | mpbiri 258 | . . . . . . 7 ⊢ (𝑁 = 2 → 2 ∥ 𝑁) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℙ → (𝑁 = 2 → 2 ∥ 𝑁)) |
9 | 8 | con3dimp 408 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 = 2) |
10 | 9 | neqned 2942 | . . . 4 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ≠ 2) |
11 | nelsn 4664 | . . . 4 ⊢ (𝑁 ≠ 2 → ¬ 𝑁 ∈ {2}) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 ∈ {2}) |
13 | 4, 12 | eldifd 3955 | . 2 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ (ℙ ∖ {2})) |
14 | 3, 13 | impbii 208 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 class class class wbr 5142 2c2 12283 ∥ cdvds 16216 ℙcprime 16627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-seq 13985 df-exp 14045 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-dvds 16217 df-prm 16628 |
This theorem is referenced by: 2lgs 27314 oddprm2 34210 |
Copyright terms: Public domain | W3C validator |