![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnoddn2prmb | Structured version Visualization version GIF version |
Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
nnoddn2prmb | ⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3986 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ) | |
2 | oddn2prm 16003 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) | |
3 | 1, 2 | jca 504 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) |
4 | simpl 475 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℙ) | |
5 | z2even 15578 | . . . . . . . 8 ⊢ 2 ∥ 2 | |
6 | breq2 4929 | . . . . . . . 8 ⊢ (𝑁 = 2 → (2 ∥ 𝑁 ↔ 2 ∥ 2)) | |
7 | 5, 6 | mpbiri 250 | . . . . . . 7 ⊢ (𝑁 = 2 → 2 ∥ 𝑁) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℙ → (𝑁 = 2 → 2 ∥ 𝑁)) |
9 | 8 | con3dimp 400 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 = 2) |
10 | 9 | neqned 2967 | . . . 4 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ≠ 2) |
11 | nelsn 4473 | . . . 4 ⊢ (𝑁 ≠ 2 → ¬ 𝑁 ∈ {2}) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 ∈ {2}) |
13 | 4, 12 | eldifd 3833 | . 2 ⊢ ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ (ℙ ∖ {2})) |
14 | 3, 13 | impbii 201 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 ∖ cdif 3819 {csn 4435 class class class wbr 4925 2c2 11493 ∥ cdvds 15465 ℙcprime 15869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-sup 8699 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-dvds 15466 df-prm 15870 |
This theorem is referenced by: 2lgs 25700 oddprm2 31606 |
Copyright terms: Public domain | W3C validator |