MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnoddn2prmb Structured version   Visualization version   GIF version

Theorem nnoddn2prmb 16728
Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
nnoddn2prmb (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁))

Proof of Theorem nnoddn2prmb
StepHypRef Expression
1 eldifi 4122 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ)
2 oddn2prm 16727 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
31, 2jca 512 . 2 (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁))
4 simpl 483 . . 3 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℙ)
5 z2even 16295 . . . . . . . 8 2 ∥ 2
6 breq2 5145 . . . . . . . 8 (𝑁 = 2 → (2 ∥ 𝑁 ↔ 2 ∥ 2))
75, 6mpbiri 257 . . . . . . 7 (𝑁 = 2 → 2 ∥ 𝑁)
87a1i 11 . . . . . 6 (𝑁 ∈ ℙ → (𝑁 = 2 → 2 ∥ 𝑁))
98con3dimp 409 . . . . 5 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 = 2)
109neqned 2946 . . . 4 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ≠ 2)
11 nelsn 4662 . . . 4 (𝑁 ≠ 2 → ¬ 𝑁 ∈ {2})
1210, 11syl 17 . . 3 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 ∈ {2})
134, 12eldifd 3955 . 2 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ (ℙ ∖ {2}))
143, 13impbii 208 1 (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  cdif 3941  {csn 4622   class class class wbr 5141  2c2 12249  cdvds 16179  cprime 16590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-dvds 16180  df-prm 16591
This theorem is referenced by:  2lgs  26837  oddprm2  33496
  Copyright terms: Public domain W3C validator