![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem1 | Structured version Visualization version GIF version |
Description: Lemma for submateq 33770. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
Ref | Expression |
---|---|
submateqlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
submateqlem1.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
submateqlem1.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
submateqlem1.1 | ⊢ (𝜑 → 𝐾 ≤ 𝑀) |
Ref | Expression |
---|---|
submateqlem1 | ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz1ssnn 13592 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
2 | submateqlem1.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
3 | 1, 2 | sselid 3993 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
4 | 3 | nnzd 12638 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
5 | submateqlem1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 5 | nnzd 12638 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | fz1ssnn 13592 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
8 | submateqlem1.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
9 | 7, 8 | sselid 3993 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
10 | 9 | nnzd 12638 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | submateqlem1.1 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑀) | |
12 | 9 | nnred 12279 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
13 | 5 | nnred 12279 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
14 | 1red 11260 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
15 | 13, 14 | resubcld 11689 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
16 | elfzle2 13565 | . . . . 5 ⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1)) | |
17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ (𝑁 − 1)) |
18 | 13 | lem1d 12199 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ≤ 𝑁) |
19 | 12, 15, 13, 17, 18 | letrd 11416 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
20 | 4, 6, 10, 11, 19 | elfzd 13552 | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾...𝑁)) |
21 | 1zzd 12646 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
22 | 10 | peano2zd 12723 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
23 | 9 | nnnn0d 12585 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
24 | 23 | nn0ge0d 12588 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑀) |
25 | 1re 11259 | . . . . . 6 ⊢ 1 ∈ ℝ | |
26 | addge02 11772 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) | |
27 | 25, 12, 26 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) |
28 | 24, 27 | mpbid 232 | . . . 4 ⊢ (𝜑 → 1 ≤ (𝑀 + 1)) |
29 | 5 | nnnn0d 12585 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
30 | nn0ltlem1 12676 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
31 | 23, 29, 30 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
32 | 17, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝑀 < 𝑁) |
33 | nnltp1le 12672 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
34 | 9, 5, 33 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
35 | 32, 34 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝑁) |
36 | 21, 6, 22, 28, 35 | elfzd 13552 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
37 | 3 | nnred 12279 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
38 | nnleltp1 12671 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) | |
39 | 3, 9, 38 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) |
40 | 11, 39 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝐾 < (𝑀 + 1)) |
41 | 37, 40 | ltned 11395 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ (𝑀 + 1)) |
42 | 41 | necomd 2994 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≠ 𝐾) |
43 | nelsn 4671 | . . . 4 ⊢ ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾}) | |
44 | 42, 43 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾}) |
45 | 36, 44 | eldifd 3974 | . 2 ⊢ (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})) |
46 | 20, 45 | jca 511 | 1 ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 {csn 4631 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 < clt 11293 ≤ cle 11294 − cmin 11490 ℕcn 12264 ℕ0cn0 12524 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: submateq 33770 |
Copyright terms: Public domain | W3C validator |