| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for submateq 33822. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateqlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateqlem1.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| submateqlem1.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
| submateqlem1.1 | ⊢ (𝜑 → 𝐾 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| submateqlem1 | ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1ssnn 13455 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
| 2 | submateqlem1.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
| 3 | 1, 2 | sselid 3927 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 4 | 3 | nnzd 12495 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 5 | submateqlem1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnzd 12495 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | fz1ssnn 13455 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
| 8 | submateqlem1.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
| 9 | 7, 8 | sselid 3927 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 10 | 9 | nnzd 12495 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 11 | submateqlem1.1 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑀) | |
| 12 | 9 | nnred 12140 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 13 | 5 | nnred 12140 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 14 | 1red 11113 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 15 | 13, 14 | resubcld 11545 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 16 | elfzle2 13428 | . . . . 5 ⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1)) | |
| 17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ (𝑁 − 1)) |
| 18 | 13 | lem1d 12055 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ≤ 𝑁) |
| 19 | 12, 15, 13, 17, 18 | letrd 11270 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 20 | 4, 6, 10, 11, 19 | elfzd 13415 | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾...𝑁)) |
| 21 | 1zzd 12503 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 22 | 10 | peano2zd 12580 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 23 | 9 | nnnn0d 12442 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 24 | 23 | nn0ge0d 12445 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 25 | 1re 11112 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 26 | addge02 11628 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) | |
| 27 | 25, 12, 26 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) |
| 28 | 24, 27 | mpbid 232 | . . . 4 ⊢ (𝜑 → 1 ≤ (𝑀 + 1)) |
| 29 | 5 | nnnn0d 12442 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 30 | nn0ltlem1 12533 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
| 31 | 23, 29, 30 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 32 | 17, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝑀 < 𝑁) |
| 33 | nnltp1le 12529 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
| 34 | 9, 5, 33 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 35 | 32, 34 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝑁) |
| 36 | 21, 6, 22, 28, 35 | elfzd 13415 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
| 37 | 3 | nnred 12140 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 38 | nnleltp1 12528 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) | |
| 39 | 3, 9, 38 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) |
| 40 | 11, 39 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝐾 < (𝑀 + 1)) |
| 41 | 37, 40 | ltned 11249 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ (𝑀 + 1)) |
| 42 | 41 | necomd 2983 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≠ 𝐾) |
| 43 | nelsn 4616 | . . . 4 ⊢ ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾}) | |
| 44 | 42, 43 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾}) |
| 45 | 36, 44 | eldifd 3908 | . 2 ⊢ (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})) |
| 46 | 20, 45 | jca 511 | 1 ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4573 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: submateq 33822 |
| Copyright terms: Public domain | W3C validator |