Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateqlem1 Structured version   Visualization version   GIF version

Theorem submateqlem1 33331
Description: Lemma for submateq 33333. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateqlem1.n (𝜑𝑁 ∈ ℕ)
submateqlem1.k (𝜑𝐾 ∈ (1...𝑁))
submateqlem1.m (𝜑𝑀 ∈ (1...(𝑁 − 1)))
submateqlem1.1 (𝜑𝐾𝑀)
Assertion
Ref Expression
submateqlem1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))

Proof of Theorem submateqlem1
StepHypRef Expression
1 fz1ssnn 13550 . . . . 5 (1...𝑁) ⊆ ℕ
2 submateqlem1.k . . . . 5 (𝜑𝐾 ∈ (1...𝑁))
31, 2sselid 3976 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12601 . . 3 (𝜑𝐾 ∈ ℤ)
5 submateqlem1.n . . . 4 (𝜑𝑁 ∈ ℕ)
65nnzd 12601 . . 3 (𝜑𝑁 ∈ ℤ)
7 fz1ssnn 13550 . . . . 5 (1...(𝑁 − 1)) ⊆ ℕ
8 submateqlem1.m . . . . 5 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
97, 8sselid 3976 . . . 4 (𝜑𝑀 ∈ ℕ)
109nnzd 12601 . . 3 (𝜑𝑀 ∈ ℤ)
11 submateqlem1.1 . . 3 (𝜑𝐾𝑀)
129nnred 12243 . . . 4 (𝜑𝑀 ∈ ℝ)
135nnred 12243 . . . . 5 (𝜑𝑁 ∈ ℝ)
14 1red 11231 . . . . 5 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11658 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℝ)
16 elfzle2 13523 . . . . 5 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
178, 16syl 17 . . . 4 (𝜑𝑀 ≤ (𝑁 − 1))
1813lem1d 12163 . . . 4 (𝜑 → (𝑁 − 1) ≤ 𝑁)
1912, 15, 13, 17, 18letrd 11387 . . 3 (𝜑𝑀𝑁)
204, 6, 10, 11, 19elfzd 13510 . 2 (𝜑𝑀 ∈ (𝐾...𝑁))
21 1zzd 12609 . . . 4 (𝜑 → 1 ∈ ℤ)
2210peano2zd 12685 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℤ)
239nnnn0d 12548 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2423nn0ge0d 12551 . . . . 5 (𝜑 → 0 ≤ 𝑀)
25 1re 11230 . . . . . 6 1 ∈ ℝ
26 addge02 11741 . . . . . 6 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2725, 12, 26sylancr 586 . . . . 5 (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2824, 27mpbid 231 . . . 4 (𝜑 → 1 ≤ (𝑀 + 1))
295nnnn0d 12548 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
30 nn0ltlem1 12638 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3123, 29, 30syl2anc 583 . . . . . 6 (𝜑 → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3217, 31mpbird 257 . . . . 5 (𝜑𝑀 < 𝑁)
33 nnltp1le 12634 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
349, 5, 33syl2anc 583 . . . . 5 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
3532, 34mpbid 231 . . . 4 (𝜑 → (𝑀 + 1) ≤ 𝑁)
3621, 6, 22, 28, 35elfzd 13510 . . 3 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
373nnred 12243 . . . . . 6 (𝜑𝐾 ∈ ℝ)
38 nnleltp1 12633 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾𝑀𝐾 < (𝑀 + 1)))
393, 9, 38syl2anc 583 . . . . . . 7 (𝜑 → (𝐾𝑀𝐾 < (𝑀 + 1)))
4011, 39mpbid 231 . . . . . 6 (𝜑𝐾 < (𝑀 + 1))
4137, 40ltned 11366 . . . . 5 (𝜑𝐾 ≠ (𝑀 + 1))
4241necomd 2991 . . . 4 (𝜑 → (𝑀 + 1) ≠ 𝐾)
43 nelsn 4664 . . . 4 ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾})
4442, 43syl 17 . . 3 (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾})
4536, 44eldifd 3955 . 2 (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))
4620, 45jca 511 1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2099  wne 2935  cdif 3941  {csn 4624   class class class wbr 5142  (class class class)co 7414  cr 11123  0cc0 11124  1c1 11125   + caddc 11127   < clt 11264  cle 11265  cmin 11460  cn 12228  0cn0 12488  ...cfz 13502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503
This theorem is referenced by:  submateq  33333
  Copyright terms: Public domain W3C validator