| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for submateq 33776. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateqlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateqlem1.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| submateqlem1.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
| submateqlem1.1 | ⊢ (𝜑 → 𝐾 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| submateqlem1 | ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1ssnn 13458 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
| 2 | submateqlem1.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
| 3 | 1, 2 | sselid 3933 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 4 | 3 | nnzd 12498 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 5 | submateqlem1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnzd 12498 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | fz1ssnn 13458 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
| 8 | submateqlem1.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
| 9 | 7, 8 | sselid 3933 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 10 | 9 | nnzd 12498 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 11 | submateqlem1.1 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑀) | |
| 12 | 9 | nnred 12143 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 13 | 5 | nnred 12143 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 14 | 1red 11116 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 15 | 13, 14 | resubcld 11548 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 16 | elfzle2 13431 | . . . . 5 ⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1)) | |
| 17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ (𝑁 − 1)) |
| 18 | 13 | lem1d 12058 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ≤ 𝑁) |
| 19 | 12, 15, 13, 17, 18 | letrd 11273 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 20 | 4, 6, 10, 11, 19 | elfzd 13418 | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾...𝑁)) |
| 21 | 1zzd 12506 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 22 | 10 | peano2zd 12583 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 23 | 9 | nnnn0d 12445 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 24 | 23 | nn0ge0d 12448 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 25 | 1re 11115 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 26 | addge02 11631 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) | |
| 27 | 25, 12, 26 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) |
| 28 | 24, 27 | mpbid 232 | . . . 4 ⊢ (𝜑 → 1 ≤ (𝑀 + 1)) |
| 29 | 5 | nnnn0d 12445 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 30 | nn0ltlem1 12536 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
| 31 | 23, 29, 30 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 32 | 17, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝑀 < 𝑁) |
| 33 | nnltp1le 12532 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
| 34 | 9, 5, 33 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 35 | 32, 34 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝑁) |
| 36 | 21, 6, 22, 28, 35 | elfzd 13418 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
| 37 | 3 | nnred 12143 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 38 | nnleltp1 12531 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) | |
| 39 | 3, 9, 38 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) |
| 40 | 11, 39 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝐾 < (𝑀 + 1)) |
| 41 | 37, 40 | ltned 11252 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ (𝑀 + 1)) |
| 42 | 41 | necomd 2980 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≠ 𝐾) |
| 43 | nelsn 4618 | . . . 4 ⊢ ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾}) | |
| 44 | 42, 43 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾}) |
| 45 | 36, 44 | eldifd 3914 | . 2 ⊢ (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})) |
| 46 | 20, 45 | jca 511 | 1 ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {csn 4577 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 − cmin 11347 ℕcn 12128 ℕ0cn0 12384 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: submateq 33776 |
| Copyright terms: Public domain | W3C validator |