Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateqlem1 Structured version   Visualization version   GIF version

Theorem submateqlem1 31757
Description: Lemma for submateq 31759. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateqlem1.n (𝜑𝑁 ∈ ℕ)
submateqlem1.k (𝜑𝐾 ∈ (1...𝑁))
submateqlem1.m (𝜑𝑀 ∈ (1...(𝑁 − 1)))
submateqlem1.1 (𝜑𝐾𝑀)
Assertion
Ref Expression
submateqlem1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))

Proof of Theorem submateqlem1
StepHypRef Expression
1 fz1ssnn 13287 . . . . 5 (1...𝑁) ⊆ ℕ
2 submateqlem1.k . . . . 5 (𝜑𝐾 ∈ (1...𝑁))
31, 2sselid 3919 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12425 . . 3 (𝜑𝐾 ∈ ℤ)
5 submateqlem1.n . . . 4 (𝜑𝑁 ∈ ℕ)
65nnzd 12425 . . 3 (𝜑𝑁 ∈ ℤ)
7 fz1ssnn 13287 . . . . 5 (1...(𝑁 − 1)) ⊆ ℕ
8 submateqlem1.m . . . . 5 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
97, 8sselid 3919 . . . 4 (𝜑𝑀 ∈ ℕ)
109nnzd 12425 . . 3 (𝜑𝑀 ∈ ℤ)
11 submateqlem1.1 . . 3 (𝜑𝐾𝑀)
129nnred 11988 . . . 4 (𝜑𝑀 ∈ ℝ)
135nnred 11988 . . . . 5 (𝜑𝑁 ∈ ℝ)
14 1red 10976 . . . . 5 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11403 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℝ)
16 elfzle2 13260 . . . . 5 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
178, 16syl 17 . . . 4 (𝜑𝑀 ≤ (𝑁 − 1))
1813lem1d 11908 . . . 4 (𝜑 → (𝑁 − 1) ≤ 𝑁)
1912, 15, 13, 17, 18letrd 11132 . . 3 (𝜑𝑀𝑁)
204, 6, 10, 11, 19elfzd 13247 . 2 (𝜑𝑀 ∈ (𝐾...𝑁))
21 1zzd 12351 . . . 4 (𝜑 → 1 ∈ ℤ)
2210peano2zd 12429 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℤ)
239nnnn0d 12293 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2423nn0ge0d 12296 . . . . 5 (𝜑 → 0 ≤ 𝑀)
25 1re 10975 . . . . . 6 1 ∈ ℝ
26 addge02 11486 . . . . . 6 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2725, 12, 26sylancr 587 . . . . 5 (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2824, 27mpbid 231 . . . 4 (𝜑 → 1 ≤ (𝑀 + 1))
295nnnn0d 12293 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
30 nn0ltlem1 12380 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3123, 29, 30syl2anc 584 . . . . . 6 (𝜑 → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3217, 31mpbird 256 . . . . 5 (𝜑𝑀 < 𝑁)
33 nnltp1le 12376 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
349, 5, 33syl2anc 584 . . . . 5 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
3532, 34mpbid 231 . . . 4 (𝜑 → (𝑀 + 1) ≤ 𝑁)
3621, 6, 22, 28, 35elfzd 13247 . . 3 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
373nnred 11988 . . . . . 6 (𝜑𝐾 ∈ ℝ)
38 nnleltp1 12375 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾𝑀𝐾 < (𝑀 + 1)))
393, 9, 38syl2anc 584 . . . . . . 7 (𝜑 → (𝐾𝑀𝐾 < (𝑀 + 1)))
4011, 39mpbid 231 . . . . . 6 (𝜑𝐾 < (𝑀 + 1))
4137, 40ltned 11111 . . . . 5 (𝜑𝐾 ≠ (𝑀 + 1))
4241necomd 2999 . . . 4 (𝜑 → (𝑀 + 1) ≠ 𝐾)
43 nelsn 4601 . . . 4 ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾})
4442, 43syl 17 . . 3 (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾})
4536, 44eldifd 3898 . 2 (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))
4620, 45jca 512 1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wne 2943  cdif 3884  {csn 4561   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  submateq  31759
  Copyright terms: Public domain W3C validator