![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem1 | Structured version Visualization version GIF version |
Description: Lemma for submateq 33637. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
Ref | Expression |
---|---|
submateqlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
submateqlem1.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
submateqlem1.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
submateqlem1.1 | ⊢ (𝜑 → 𝐾 ≤ 𝑀) |
Ref | Expression |
---|---|
submateqlem1 | ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz1ssnn 13580 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
2 | submateqlem1.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
3 | 1, 2 | sselid 3976 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
4 | 3 | nnzd 12631 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
5 | submateqlem1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 5 | nnzd 12631 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | fz1ssnn 13580 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
8 | submateqlem1.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
9 | 7, 8 | sselid 3976 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
10 | 9 | nnzd 12631 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | submateqlem1.1 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑀) | |
12 | 9 | nnred 12273 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
13 | 5 | nnred 12273 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
14 | 1red 11256 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
15 | 13, 14 | resubcld 11683 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
16 | elfzle2 13553 | . . . . 5 ⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1)) | |
17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ (𝑁 − 1)) |
18 | 13 | lem1d 12193 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ≤ 𝑁) |
19 | 12, 15, 13, 17, 18 | letrd 11412 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
20 | 4, 6, 10, 11, 19 | elfzd 13540 | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾...𝑁)) |
21 | 1zzd 12639 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
22 | 10 | peano2zd 12715 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
23 | 9 | nnnn0d 12578 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
24 | 23 | nn0ge0d 12581 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑀) |
25 | 1re 11255 | . . . . . 6 ⊢ 1 ∈ ℝ | |
26 | addge02 11766 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) | |
27 | 25, 12, 26 | sylancr 585 | . . . . 5 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) |
28 | 24, 27 | mpbid 231 | . . . 4 ⊢ (𝜑 → 1 ≤ (𝑀 + 1)) |
29 | 5 | nnnn0d 12578 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
30 | nn0ltlem1 12668 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
31 | 23, 29, 30 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
32 | 17, 31 | mpbird 256 | . . . . 5 ⊢ (𝜑 → 𝑀 < 𝑁) |
33 | nnltp1le 12664 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
34 | 9, 5, 33 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
35 | 32, 34 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝑁) |
36 | 21, 6, 22, 28, 35 | elfzd 13540 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
37 | 3 | nnred 12273 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
38 | nnleltp1 12663 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) | |
39 | 3, 9, 38 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) |
40 | 11, 39 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → 𝐾 < (𝑀 + 1)) |
41 | 37, 40 | ltned 11391 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ (𝑀 + 1)) |
42 | 41 | necomd 2986 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≠ 𝐾) |
43 | nelsn 4663 | . . . 4 ⊢ ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾}) | |
44 | 42, 43 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾}) |
45 | 36, 44 | eldifd 3957 | . 2 ⊢ (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})) |
46 | 20, 45 | jca 510 | 1 ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ≠ wne 2930 ∖ cdif 3943 {csn 4623 class class class wbr 5145 (class class class)co 7416 ℝcr 11148 0cc0 11149 1c1 11150 + caddc 11152 < clt 11289 ≤ cle 11290 − cmin 11485 ℕcn 12258 ℕ0cn0 12518 ...cfz 13532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 |
This theorem is referenced by: submateq 33637 |
Copyright terms: Public domain | W3C validator |