Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateqlem1 Structured version   Visualization version   GIF version

Theorem submateqlem1 33753
Description: Lemma for submateq 33755. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateqlem1.n (𝜑𝑁 ∈ ℕ)
submateqlem1.k (𝜑𝐾 ∈ (1...𝑁))
submateqlem1.m (𝜑𝑀 ∈ (1...(𝑁 − 1)))
submateqlem1.1 (𝜑𝐾𝑀)
Assertion
Ref Expression
submateqlem1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))

Proof of Theorem submateqlem1
StepHypRef Expression
1 fz1ssnn 13615 . . . . 5 (1...𝑁) ⊆ ℕ
2 submateqlem1.k . . . . 5 (𝜑𝐾 ∈ (1...𝑁))
31, 2sselid 4006 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12666 . . 3 (𝜑𝐾 ∈ ℤ)
5 submateqlem1.n . . . 4 (𝜑𝑁 ∈ ℕ)
65nnzd 12666 . . 3 (𝜑𝑁 ∈ ℤ)
7 fz1ssnn 13615 . . . . 5 (1...(𝑁 − 1)) ⊆ ℕ
8 submateqlem1.m . . . . 5 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
97, 8sselid 4006 . . . 4 (𝜑𝑀 ∈ ℕ)
109nnzd 12666 . . 3 (𝜑𝑀 ∈ ℤ)
11 submateqlem1.1 . . 3 (𝜑𝐾𝑀)
129nnred 12308 . . . 4 (𝜑𝑀 ∈ ℝ)
135nnred 12308 . . . . 5 (𝜑𝑁 ∈ ℝ)
14 1red 11291 . . . . 5 (𝜑 → 1 ∈ ℝ)
1513, 14resubcld 11718 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℝ)
16 elfzle2 13588 . . . . 5 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
178, 16syl 17 . . . 4 (𝜑𝑀 ≤ (𝑁 − 1))
1813lem1d 12228 . . . 4 (𝜑 → (𝑁 − 1) ≤ 𝑁)
1912, 15, 13, 17, 18letrd 11447 . . 3 (𝜑𝑀𝑁)
204, 6, 10, 11, 19elfzd 13575 . 2 (𝜑𝑀 ∈ (𝐾...𝑁))
21 1zzd 12674 . . . 4 (𝜑 → 1 ∈ ℤ)
2210peano2zd 12750 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℤ)
239nnnn0d 12613 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2423nn0ge0d 12616 . . . . 5 (𝜑 → 0 ≤ 𝑀)
25 1re 11290 . . . . . 6 1 ∈ ℝ
26 addge02 11801 . . . . . 6 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2725, 12, 26sylancr 586 . . . . 5 (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2824, 27mpbid 232 . . . 4 (𝜑 → 1 ≤ (𝑀 + 1))
295nnnn0d 12613 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
30 nn0ltlem1 12703 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3123, 29, 30syl2anc 583 . . . . . 6 (𝜑 → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3217, 31mpbird 257 . . . . 5 (𝜑𝑀 < 𝑁)
33 nnltp1le 12699 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
349, 5, 33syl2anc 583 . . . . 5 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
3532, 34mpbid 232 . . . 4 (𝜑 → (𝑀 + 1) ≤ 𝑁)
3621, 6, 22, 28, 35elfzd 13575 . . 3 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
373nnred 12308 . . . . . 6 (𝜑𝐾 ∈ ℝ)
38 nnleltp1 12698 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾𝑀𝐾 < (𝑀 + 1)))
393, 9, 38syl2anc 583 . . . . . . 7 (𝜑 → (𝐾𝑀𝐾 < (𝑀 + 1)))
4011, 39mpbid 232 . . . . . 6 (𝜑𝐾 < (𝑀 + 1))
4137, 40ltned 11426 . . . . 5 (𝜑𝐾 ≠ (𝑀 + 1))
4241necomd 3002 . . . 4 (𝜑 → (𝑀 + 1) ≠ 𝐾)
43 nelsn 4688 . . . 4 ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾})
4442, 43syl 17 . . 3 (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾})
4536, 44eldifd 3987 . 2 (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))
4620, 45jca 511 1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wne 2946  cdif 3973  {csn 4648   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  submateq  33755
  Copyright terms: Public domain W3C validator