| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for submateq 33845. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateqlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateqlem1.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| submateqlem1.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
| submateqlem1.1 | ⊢ (𝜑 → 𝐾 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| submateqlem1 | ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1ssnn 13577 | . . . . 5 ⊢ (1...𝑁) ⊆ ℕ | |
| 2 | submateqlem1.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
| 3 | 1, 2 | sselid 3961 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 4 | 3 | nnzd 12620 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 5 | submateqlem1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 5 | nnzd 12620 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | fz1ssnn 13577 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
| 8 | submateqlem1.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
| 9 | 7, 8 | sselid 3961 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 10 | 9 | nnzd 12620 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 11 | submateqlem1.1 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑀) | |
| 12 | 9 | nnred 12260 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 13 | 5 | nnred 12260 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 14 | 1red 11241 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 15 | 13, 14 | resubcld 11670 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 16 | elfzle2 13550 | . . . . 5 ⊢ (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1)) | |
| 17 | 8, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ (𝑁 − 1)) |
| 18 | 13 | lem1d 12180 | . . . 4 ⊢ (𝜑 → (𝑁 − 1) ≤ 𝑁) |
| 19 | 12, 15, 13, 17, 18 | letrd 11397 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 20 | 4, 6, 10, 11, 19 | elfzd 13537 | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾...𝑁)) |
| 21 | 1zzd 12628 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 22 | 10 | peano2zd 12705 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 23 | 9 | nnnn0d 12567 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 24 | 23 | nn0ge0d 12570 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 25 | 1re 11240 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 26 | addge02 11753 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) | |
| 27 | 25, 12, 26 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1))) |
| 28 | 24, 27 | mpbid 232 | . . . 4 ⊢ (𝜑 → 1 ≤ (𝑀 + 1)) |
| 29 | 5 | nnnn0d 12567 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 30 | nn0ltlem1 12658 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
| 31 | 23, 29, 30 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 32 | 17, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝑀 < 𝑁) |
| 33 | nnltp1le 12654 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
| 34 | 9, 5, 33 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 35 | 32, 34 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝑁) |
| 36 | 21, 6, 22, 28, 35 | elfzd 13537 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
| 37 | 3 | nnred 12260 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 38 | nnleltp1 12653 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) | |
| 39 | 3, 9, 38 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ≤ 𝑀 ↔ 𝐾 < (𝑀 + 1))) |
| 40 | 11, 39 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝐾 < (𝑀 + 1)) |
| 41 | 37, 40 | ltned 11376 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ (𝑀 + 1)) |
| 42 | 41 | necomd 2988 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ≠ 𝐾) |
| 43 | nelsn 4647 | . . . 4 ⊢ ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾}) | |
| 44 | 42, 43 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾}) |
| 45 | 36, 44 | eldifd 3942 | . 2 ⊢ (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})) |
| 46 | 20, 45 | jca 511 | 1 ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 {csn 4606 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 ≤ cle 11275 − cmin 11471 ℕcn 12245 ℕ0cn0 12506 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 |
| This theorem is referenced by: submateq 33845 |
| Copyright terms: Public domain | W3C validator |