| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for submateq 33806. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateqlem2.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateqlem2.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| submateqlem2.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
| submateqlem2.1 | ⊢ (𝜑 → 𝑀 < 𝐾) |
| Ref | Expression |
|---|---|
| submateqlem2 | ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1ssnn 13523 | . . . . . 6 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
| 2 | submateqlem2.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
| 3 | 1, 2 | sselid 3947 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4 | 3 | nnge1d 12241 | . . . 4 ⊢ (𝜑 → 1 ≤ 𝑀) |
| 5 | submateqlem2.1 | . . . 4 ⊢ (𝜑 → 𝑀 < 𝐾) | |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ (𝜑 → (1 ≤ 𝑀 ∧ 𝑀 < 𝐾)) |
| 7 | 2 | elfzelzd 13493 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | 1zzd 12571 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 9 | submateqlem2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
| 10 | 9 | elfzelzd 13493 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 11 | elfzo 13629 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀 ∧ 𝑀 < 𝐾))) | |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀 ∧ 𝑀 < 𝐾))) |
| 13 | 6, 12 | mpbird 257 | . 2 ⊢ (𝜑 → 𝑀 ∈ (1..^𝐾)) |
| 14 | 2 | orcd 873 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁)) |
| 15 | submateqlem2.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 16 | nnuz 12843 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 17 | 15, 16 | eleqtrdi 2839 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘1)) |
| 18 | fzm1 13575 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))) | |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))) |
| 20 | 14, 19 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
| 21 | 3 | nnred 12208 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 22 | 21, 5 | ltned 11317 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝐾) |
| 23 | nelsn 4633 | . . . 4 ⊢ (𝑀 ≠ 𝐾 → ¬ 𝑀 ∈ {𝐾}) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝑀 ∈ {𝐾}) |
| 25 | 20, 24 | eldifd 3928 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((1...𝑁) ∖ {𝐾})) |
| 26 | 13, 25 | jca 511 | 1 ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 < clt 11215 ≤ cle 11216 − cmin 11412 ℕcn 12193 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 ..^cfzo 13622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 |
| This theorem is referenced by: submateq 33806 |
| Copyright terms: Public domain | W3C validator |