| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for submateq 33845. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateqlem2.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateqlem2.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
| submateqlem2.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
| submateqlem2.1 | ⊢ (𝜑 → 𝑀 < 𝐾) |
| Ref | Expression |
|---|---|
| submateqlem2 | ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1ssnn 13577 | . . . . . 6 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
| 2 | submateqlem2.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
| 3 | 1, 2 | sselid 3961 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4 | 3 | nnge1d 12293 | . . . 4 ⊢ (𝜑 → 1 ≤ 𝑀) |
| 5 | submateqlem2.1 | . . . 4 ⊢ (𝜑 → 𝑀 < 𝐾) | |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ (𝜑 → (1 ≤ 𝑀 ∧ 𝑀 < 𝐾)) |
| 7 | 2 | elfzelzd 13547 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | 1zzd 12628 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 9 | submateqlem2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
| 10 | 9 | elfzelzd 13547 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 11 | elfzo 13683 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀 ∧ 𝑀 < 𝐾))) | |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀 ∧ 𝑀 < 𝐾))) |
| 13 | 6, 12 | mpbird 257 | . 2 ⊢ (𝜑 → 𝑀 ∈ (1..^𝐾)) |
| 14 | 2 | orcd 873 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁)) |
| 15 | submateqlem2.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 16 | nnuz 12900 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 17 | 15, 16 | eleqtrdi 2845 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘1)) |
| 18 | fzm1 13629 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))) | |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))) |
| 20 | 14, 19 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
| 21 | 3 | nnred 12260 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 22 | 21, 5 | ltned 11376 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝐾) |
| 23 | nelsn 4647 | . . . 4 ⊢ (𝑀 ≠ 𝐾 → ¬ 𝑀 ∈ {𝐾}) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝑀 ∈ {𝐾}) |
| 25 | 20, 24 | eldifd 3942 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((1...𝑁) ∖ {𝐾})) |
| 26 | 13, 25 | jca 511 | 1 ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 {csn 4606 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 1c1 11135 < clt 11274 ≤ cle 11275 − cmin 11471 ℕcn 12245 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 ..^cfzo 13676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 |
| This theorem is referenced by: submateq 33845 |
| Copyright terms: Public domain | W3C validator |