Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateqlem2 Structured version   Visualization version   GIF version

Theorem submateqlem2 30211
Description: Lemma for submateq 30212. (Contributed by Thierry Arnoux, 26-Aug-2020.)
Hypotheses
Ref Expression
submateqlem2.n (𝜑𝑁 ∈ ℕ)
submateqlem2.k (𝜑𝐾 ∈ (1...𝑁))
submateqlem2.m (𝜑𝑀 ∈ (1...(𝑁 − 1)))
submateqlem2.1 (𝜑𝑀 < 𝐾)
Assertion
Ref Expression
submateqlem2 (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾})))

Proof of Theorem submateqlem2
StepHypRef Expression
1 fz1ssnn 12578 . . . . . 6 (1...(𝑁 − 1)) ⊆ ℕ
2 submateqlem2.m . . . . . 6 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
31, 2sseldi 3750 . . . . 5 (𝜑𝑀 ∈ ℕ)
43nnge1d 11264 . . . 4 (𝜑 → 1 ≤ 𝑀)
5 submateqlem2.1 . . . 4 (𝜑𝑀 < 𝐾)
64, 5jca 495 . . 3 (𝜑 → (1 ≤ 𝑀𝑀 < 𝐾))
73nnzd 11682 . . . 4 (𝜑𝑀 ∈ ℤ)
8 1zzd 11609 . . . 4 (𝜑 → 1 ∈ ℤ)
9 fz1ssnn 12578 . . . . . 6 (1...𝑁) ⊆ ℕ
10 submateqlem2.k . . . . . 6 (𝜑𝐾 ∈ (1...𝑁))
119, 10sseldi 3750 . . . . 5 (𝜑𝐾 ∈ ℕ)
1211nnzd 11682 . . . 4 (𝜑𝐾 ∈ ℤ)
13 elfzo 12679 . . . 4 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀𝑀 < 𝐾)))
147, 8, 12, 13syl3anc 1476 . . 3 (𝜑 → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀𝑀 < 𝐾)))
156, 14mpbird 247 . 2 (𝜑𝑀 ∈ (1..^𝐾))
162orcd 852 . . . 4 (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))
17 submateqlem2.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
18 nnuz 11924 . . . . . 6 ℕ = (ℤ‘1)
1917, 18syl6eleq 2860 . . . . 5 (𝜑𝑁 ∈ (ℤ‘1))
20 fzm1 12626 . . . . 5 (𝑁 ∈ (ℤ‘1) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁)))
2119, 20syl 17 . . . 4 (𝜑 → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁)))
2216, 21mpbird 247 . . 3 (𝜑𝑀 ∈ (1...𝑁))
233nnred 11236 . . . . 5 (𝜑𝑀 ∈ ℝ)
2423, 5ltned 10374 . . . 4 (𝜑𝑀𝐾)
25 nelsn 4351 . . . 4 (𝑀𝐾 → ¬ 𝑀 ∈ {𝐾})
2624, 25syl 17 . . 3 (𝜑 → ¬ 𝑀 ∈ {𝐾})
2722, 26eldifd 3734 . 2 (𝜑𝑀 ∈ ((1...𝑁) ∖ {𝐾}))
2815, 27jca 495 1 (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826   = wceq 1631  wcel 2145  wne 2943  cdif 3720  {csn 4316   class class class wbr 4786  cfv 6031  (class class class)co 6792  1c1 10138   < clt 10275  cle 10276  cmin 10467  cn 11221  cz 11578  cuz 11887  ...cfz 12532  ..^cfzo 12672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673
This theorem is referenced by:  submateq  30212
  Copyright terms: Public domain W3C validator