![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submateqlem2 | Structured version Visualization version GIF version |
Description: Lemma for submateq 33755. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
Ref | Expression |
---|---|
submateqlem2.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
submateqlem2.k | ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) |
submateqlem2.m | ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) |
submateqlem2.1 | ⊢ (𝜑 → 𝑀 < 𝐾) |
Ref | Expression |
---|---|
submateqlem2 | ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz1ssnn 13615 | . . . . . 6 ⊢ (1...(𝑁 − 1)) ⊆ ℕ | |
2 | submateqlem2.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) | |
3 | 1, 2 | sselid 4006 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4 | 3 | nnge1d 12341 | . . . 4 ⊢ (𝜑 → 1 ≤ 𝑀) |
5 | submateqlem2.1 | . . . 4 ⊢ (𝜑 → 𝑀 < 𝐾) | |
6 | 4, 5 | jca 511 | . . 3 ⊢ (𝜑 → (1 ≤ 𝑀 ∧ 𝑀 < 𝐾)) |
7 | 2 | elfzelzd 13585 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
8 | 1zzd 12674 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
9 | submateqlem2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) | |
10 | 9 | elfzelzd 13585 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
11 | elfzo 13718 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀 ∧ 𝑀 < 𝐾))) | |
12 | 7, 8, 10, 11 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀 ∧ 𝑀 < 𝐾))) |
13 | 6, 12 | mpbird 257 | . 2 ⊢ (𝜑 → 𝑀 ∈ (1..^𝐾)) |
14 | 2 | orcd 872 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁)) |
15 | submateqlem2.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
16 | nnuz 12946 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | eleqtrdi 2854 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘1)) |
18 | fzm1 13664 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))) |
20 | 14, 19 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
21 | 3 | nnred 12308 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
22 | 21, 5 | ltned 11426 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 𝐾) |
23 | nelsn 4688 | . . . 4 ⊢ (𝑀 ≠ 𝐾 → ¬ 𝑀 ∈ {𝐾}) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝑀 ∈ {𝐾}) |
25 | 20, 24 | eldifd 3987 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((1...𝑁) ∖ {𝐾})) |
26 | 13, 25 | jca 511 | 1 ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 < clt 11324 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: submateq 33755 |
Copyright terms: Public domain | W3C validator |