Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateqlem2 Structured version   Visualization version   GIF version

Theorem submateqlem2 33893
Description: Lemma for submateq 33894. (Contributed by Thierry Arnoux, 26-Aug-2020.)
Hypotheses
Ref Expression
submateqlem2.n (𝜑𝑁 ∈ ℕ)
submateqlem2.k (𝜑𝐾 ∈ (1...𝑁))
submateqlem2.m (𝜑𝑀 ∈ (1...(𝑁 − 1)))
submateqlem2.1 (𝜑𝑀 < 𝐾)
Assertion
Ref Expression
submateqlem2 (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾})))

Proof of Theorem submateqlem2
StepHypRef Expression
1 fz1ssnn 13462 . . . . . 6 (1...(𝑁 − 1)) ⊆ ℕ
2 submateqlem2.m . . . . . 6 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
31, 2sselid 3928 . . . . 5 (𝜑𝑀 ∈ ℕ)
43nnge1d 12184 . . . 4 (𝜑 → 1 ≤ 𝑀)
5 submateqlem2.1 . . . 4 (𝜑𝑀 < 𝐾)
64, 5jca 511 . . 3 (𝜑 → (1 ≤ 𝑀𝑀 < 𝐾))
72elfzelzd 13432 . . . 4 (𝜑𝑀 ∈ ℤ)
8 1zzd 12513 . . . 4 (𝜑 → 1 ∈ ℤ)
9 submateqlem2.k . . . . 5 (𝜑𝐾 ∈ (1...𝑁))
109elfzelzd 13432 . . . 4 (𝜑𝐾 ∈ ℤ)
11 elfzo 13568 . . . 4 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀𝑀 < 𝐾)))
127, 8, 10, 11syl3anc 1373 . . 3 (𝜑 → (𝑀 ∈ (1..^𝐾) ↔ (1 ≤ 𝑀𝑀 < 𝐾)))
136, 12mpbird 257 . 2 (𝜑𝑀 ∈ (1..^𝐾))
142orcd 873 . . . 4 (𝜑 → (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁))
15 submateqlem2.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
16 nnuz 12781 . . . . . 6 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2843 . . . . 5 (𝜑𝑁 ∈ (ℤ‘1))
18 fzm1 13514 . . . . 5 (𝑁 ∈ (ℤ‘1) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁)))
1917, 18syl 17 . . . 4 (𝜑 → (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ (1...(𝑁 − 1)) ∨ 𝑀 = 𝑁)))
2014, 19mpbird 257 . . 3 (𝜑𝑀 ∈ (1...𝑁))
213nnred 12151 . . . . 5 (𝜑𝑀 ∈ ℝ)
2221, 5ltned 11260 . . . 4 (𝜑𝑀𝐾)
23 nelsn 4620 . . . 4 (𝑀𝐾 → ¬ 𝑀 ∈ {𝐾})
2422, 23syl 17 . . 3 (𝜑 → ¬ 𝑀 ∈ {𝐾})
2520, 24eldifd 3909 . 2 (𝜑𝑀 ∈ ((1...𝑁) ∖ {𝐾}))
2613, 25jca 511 1 (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  cdif 3895  {csn 4577   class class class wbr 5095  cfv 6489  (class class class)co 7355  1c1 11018   < clt 11157  cle 11158  cmin 11355  cn 12136  cz 12479  cuz 12742  ...cfz 13414  ..^cfzo 13561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562
This theorem is referenced by:  submateq  33894
  Copyright terms: Public domain W3C validator