| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnvs | Structured version Visualization version GIF version | ||
| Description: A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs 42598 (see prjspnerlem 42605). (Contributed by SN, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| prjspnvs.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
| prjspnvs.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
| prjspnvs.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
| prjspnvs.s | ⊢ 𝑆 = (Base‘𝐾) |
| prjspnvs.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| prjspnvs.0 | ⊢ 0 = (0g‘𝐾) |
| prjspnvs.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| prjspnvs.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| prjspnvs.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| prjspnvs.3 | ⊢ (𝜑 → 𝐶 ≠ 0 ) |
| Ref | Expression |
|---|---|
| prjspnvs | ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspnvs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 2 | ovexd 7422 | . . . 4 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
| 3 | prjspnvs.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
| 4 | 3 | frlmlvec 21670 | . . . 4 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) |
| 6 | prjspnvs.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | prjspnvs.2 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 8 | prjspnvs.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ≠ 0 ) | |
| 9 | nelsn 4630 | . . . . . 6 ⊢ (𝐶 ≠ 0 → ¬ 𝐶 ∈ { 0 }) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ¬ 𝐶 ∈ { 0 }) |
| 11 | 7, 10 | eldifd 3925 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑆 ∖ { 0 })) |
| 12 | prjspnvs.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝐾) | |
| 13 | 3 | frlmsca 21662 | . . . . . . . 8 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊)) |
| 14 | 1, 2, 13 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑊)) |
| 15 | 14 | fveq2d 6862 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊))) |
| 16 | 12, 15 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘(Scalar‘𝑊))) |
| 17 | prjspnvs.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐾) | |
| 18 | 14 | fveq2d 6862 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐾) = (0g‘(Scalar‘𝑊))) |
| 19 | 17, 18 | eqtrid 2776 | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘(Scalar‘𝑊))) |
| 20 | 19 | sneqd 4601 | . . . . 5 ⊢ (𝜑 → { 0 } = {(0g‘(Scalar‘𝑊))}) |
| 21 | 16, 20 | difeq12d 4090 | . . . 4 ⊢ (𝜑 → (𝑆 ∖ { 0 }) = ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) |
| 22 | 11, 21 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) |
| 23 | eqid 2729 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} | |
| 24 | prjspnvs.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
| 25 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 26 | prjspnvs.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 27 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 28 | eqid 2729 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 29 | 23, 24, 25, 26, 27, 28 | prjspvs 42598 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝐶 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋) |
| 30 | 5, 6, 22, 29 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋) |
| 31 | prjspnvs.e | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
| 32 | 31, 3, 24, 12, 26 | prjspnerlem 42605 | . . . 4 ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
| 33 | 1, 32 | syl 17 | . . 3 ⊢ (𝜑 → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
| 34 | 33 | breqd 5118 | . 2 ⊢ (𝜑 → ((𝐶 · 𝑋) ∼ 𝑋 ↔ (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋)) |
| 35 | 30, 34 | mpbird 257 | 1 ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3447 ∖ cdif 3911 {csn 4589 class class class wbr 5107 {copab 5169 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ...cfz 13468 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 DivRingcdr 20638 LVecclvec 21009 freeLMod cfrlm 21655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrg 20479 df-drng 20640 df-lmod 20768 df-lss 20838 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 |
| This theorem is referenced by: prjspner01 42613 |
| Copyright terms: Public domain | W3C validator |