| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnvs | Structured version Visualization version GIF version | ||
| Description: A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs 42583 (see prjspnerlem 42590). (Contributed by SN, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| prjspnvs.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
| prjspnvs.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
| prjspnvs.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
| prjspnvs.s | ⊢ 𝑆 = (Base‘𝐾) |
| prjspnvs.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| prjspnvs.0 | ⊢ 0 = (0g‘𝐾) |
| prjspnvs.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| prjspnvs.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| prjspnvs.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| prjspnvs.3 | ⊢ (𝜑 → 𝐶 ≠ 0 ) |
| Ref | Expression |
|---|---|
| prjspnvs | ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspnvs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 2 | ovexd 7384 | . . . 4 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
| 3 | prjspnvs.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
| 4 | 3 | frlmlvec 21668 | . . . 4 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) |
| 6 | prjspnvs.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | prjspnvs.2 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 8 | prjspnvs.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ≠ 0 ) | |
| 9 | nelsn 4618 | . . . . . 6 ⊢ (𝐶 ≠ 0 → ¬ 𝐶 ∈ { 0 }) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ¬ 𝐶 ∈ { 0 }) |
| 11 | 7, 10 | eldifd 3914 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑆 ∖ { 0 })) |
| 12 | prjspnvs.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝐾) | |
| 13 | 3 | frlmsca 21660 | . . . . . . . 8 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊)) |
| 14 | 1, 2, 13 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑊)) |
| 15 | 14 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊))) |
| 16 | 12, 15 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘(Scalar‘𝑊))) |
| 17 | prjspnvs.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐾) | |
| 18 | 14 | fveq2d 6826 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐾) = (0g‘(Scalar‘𝑊))) |
| 19 | 17, 18 | eqtrid 2776 | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘(Scalar‘𝑊))) |
| 20 | 19 | sneqd 4589 | . . . . 5 ⊢ (𝜑 → { 0 } = {(0g‘(Scalar‘𝑊))}) |
| 21 | 16, 20 | difeq12d 4078 | . . . 4 ⊢ (𝜑 → (𝑆 ∖ { 0 }) = ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) |
| 22 | 11, 21 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) |
| 23 | eqid 2729 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} | |
| 24 | prjspnvs.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
| 25 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 26 | prjspnvs.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 27 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 28 | eqid 2729 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 29 | 23, 24, 25, 26, 27, 28 | prjspvs 42583 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝐶 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋) |
| 30 | 5, 6, 22, 29 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋) |
| 31 | prjspnvs.e | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
| 32 | 31, 3, 24, 12, 26 | prjspnerlem 42590 | . . . 4 ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
| 33 | 1, 32 | syl 17 | . . 3 ⊢ (𝜑 → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
| 34 | 33 | breqd 5103 | . 2 ⊢ (𝜑 → ((𝐶 · 𝑋) ∼ 𝑋 ↔ (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋)) |
| 35 | 30, 34 | mpbird 257 | 1 ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3436 ∖ cdif 3900 {csn 4577 class class class wbr 5092 {copab 5154 ‘cfv 6482 (class class class)co 7349 0cc0 11009 ...cfz 13410 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 DivRingcdr 20614 LVecclvec 21006 freeLMod cfrlm 21653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-subrg 20455 df-drng 20616 df-lmod 20765 df-lss 20835 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 |
| This theorem is referenced by: prjspner01 42598 |
| Copyright terms: Public domain | W3C validator |