Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnvs | Structured version Visualization version GIF version |
Description: A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs 40370 (see prjspnerlem 40377). (Contributed by SN, 8-Aug-2024.) |
Ref | Expression |
---|---|
prjspnvs.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
prjspnvs.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspnvs.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspnvs.s | ⊢ 𝑆 = (Base‘𝐾) |
prjspnvs.x | ⊢ · = ( ·𝑠 ‘𝑊) |
prjspnvs.0 | ⊢ 0 = (0g‘𝐾) |
prjspnvs.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
prjspnvs.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
prjspnvs.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
prjspnvs.3 | ⊢ (𝜑 → 𝐶 ≠ 0 ) |
Ref | Expression |
---|---|
prjspnvs | ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspnvs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
2 | ovexd 7290 | . . . 4 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
3 | prjspnvs.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
4 | 3 | frlmlvec 20878 | . . . 4 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec) |
5 | 1, 2, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) |
6 | prjspnvs.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | prjspnvs.2 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
8 | prjspnvs.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ≠ 0 ) | |
9 | nelsn 4598 | . . . . . 6 ⊢ (𝐶 ≠ 0 → ¬ 𝐶 ∈ { 0 }) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ¬ 𝐶 ∈ { 0 }) |
11 | 7, 10 | eldifd 3894 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑆 ∖ { 0 })) |
12 | prjspnvs.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝐾) | |
13 | 3 | frlmsca 20870 | . . . . . . . 8 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊)) |
14 | 1, 2, 13 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝐾 = (Scalar‘𝑊)) |
15 | 14 | fveq2d 6760 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊))) |
16 | 12, 15 | syl5eq 2791 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘(Scalar‘𝑊))) |
17 | prjspnvs.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐾) | |
18 | 14 | fveq2d 6760 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝐾) = (0g‘(Scalar‘𝑊))) |
19 | 17, 18 | syl5eq 2791 | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘(Scalar‘𝑊))) |
20 | 19 | sneqd 4570 | . . . . 5 ⊢ (𝜑 → { 0 } = {(0g‘(Scalar‘𝑊))}) |
21 | 16, 20 | difeq12d 4054 | . . . 4 ⊢ (𝜑 → (𝑆 ∖ { 0 }) = ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) |
22 | 11, 21 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) |
23 | eqid 2738 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} | |
24 | prjspnvs.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
25 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
26 | prjspnvs.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
27 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
28 | eqid 2738 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
29 | 23, 24, 25, 26, 27, 28 | prjspvs 40370 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝐶 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋) |
30 | 5, 6, 22, 29 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋) |
31 | prjspnvs.e | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
32 | 31, 3, 24, 12, 26 | prjspnerlem 40377 | . . . 4 ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
33 | 1, 32 | syl 17 | . . 3 ⊢ (𝜑 → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
34 | 33 | breqd 5081 | . 2 ⊢ (𝜑 → ((𝐶 · 𝑋) ∼ 𝑋 ↔ (𝐶 · 𝑋){〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}𝑋)) |
35 | 30, 34 | mpbird 256 | 1 ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 {csn 4558 class class class wbr 5070 {copab 5132 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ...cfz 13168 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 DivRingcdr 19906 LVecclvec 20279 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: prjspner01 40383 |
Copyright terms: Public domain | W3C validator |