![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnvs | Structured version Visualization version GIF version |
Description: A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs 41654 (see prjspnerlem 41661). (Contributed by SN, 8-Aug-2024.) |
Ref | Expression |
---|---|
prjspnvs.e | β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β π π₯ = (π Β· π¦))} |
prjspnvs.w | β’ π = (πΎ freeLMod (0...π)) |
prjspnvs.b | β’ π΅ = ((Baseβπ) β {(0gβπ)}) |
prjspnvs.s | β’ π = (BaseβπΎ) |
prjspnvs.x | β’ Β· = ( Β·π βπ) |
prjspnvs.0 | β’ 0 = (0gβπΎ) |
prjspnvs.k | β’ (π β πΎ β DivRing) |
prjspnvs.1 | β’ (π β π β π΅) |
prjspnvs.2 | β’ (π β πΆ β π) |
prjspnvs.3 | β’ (π β πΆ β 0 ) |
Ref | Expression |
---|---|
prjspnvs | β’ (π β (πΆ Β· π) βΌ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspnvs.k | . . . 4 β’ (π β πΎ β DivRing) | |
2 | ovexd 7446 | . . . 4 β’ (π β (0...π) β V) | |
3 | prjspnvs.w | . . . . 5 β’ π = (πΎ freeLMod (0...π)) | |
4 | 3 | frlmlvec 21535 | . . . 4 β’ ((πΎ β DivRing β§ (0...π) β V) β π β LVec) |
5 | 1, 2, 4 | syl2anc 582 | . . 3 β’ (π β π β LVec) |
6 | prjspnvs.1 | . . 3 β’ (π β π β π΅) | |
7 | prjspnvs.2 | . . . . 5 β’ (π β πΆ β π) | |
8 | prjspnvs.3 | . . . . . 6 β’ (π β πΆ β 0 ) | |
9 | nelsn 4667 | . . . . . 6 β’ (πΆ β 0 β Β¬ πΆ β { 0 }) | |
10 | 8, 9 | syl 17 | . . . . 5 β’ (π β Β¬ πΆ β { 0 }) |
11 | 7, 10 | eldifd 3958 | . . . 4 β’ (π β πΆ β (π β { 0 })) |
12 | prjspnvs.s | . . . . . 6 β’ π = (BaseβπΎ) | |
13 | 3 | frlmsca 21527 | . . . . . . . 8 β’ ((πΎ β DivRing β§ (0...π) β V) β πΎ = (Scalarβπ)) |
14 | 1, 2, 13 | syl2anc 582 | . . . . . . 7 β’ (π β πΎ = (Scalarβπ)) |
15 | 14 | fveq2d 6894 | . . . . . 6 β’ (π β (BaseβπΎ) = (Baseβ(Scalarβπ))) |
16 | 12, 15 | eqtrid 2782 | . . . . 5 β’ (π β π = (Baseβ(Scalarβπ))) |
17 | prjspnvs.0 | . . . . . . 7 β’ 0 = (0gβπΎ) | |
18 | 14 | fveq2d 6894 | . . . . . . 7 β’ (π β (0gβπΎ) = (0gβ(Scalarβπ))) |
19 | 17, 18 | eqtrid 2782 | . . . . . 6 β’ (π β 0 = (0gβ(Scalarβπ))) |
20 | 19 | sneqd 4639 | . . . . 5 β’ (π β { 0 } = {(0gβ(Scalarβπ))}) |
21 | 16, 20 | difeq12d 4122 | . . . 4 β’ (π β (π β { 0 }) = ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))})) |
22 | 11, 21 | eleqtrd 2833 | . . 3 β’ (π β πΆ β ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))})) |
23 | eqid 2730 | . . . 4 β’ {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π Β· π¦))} = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π Β· π¦))} | |
24 | prjspnvs.b | . . . 4 β’ π΅ = ((Baseβπ) β {(0gβπ)}) | |
25 | eqid 2730 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
26 | prjspnvs.x | . . . 4 β’ Β· = ( Β·π βπ) | |
27 | eqid 2730 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
28 | eqid 2730 | . . . 4 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
29 | 23, 24, 25, 26, 27, 28 | prjspvs 41654 | . . 3 β’ ((π β LVec β§ π β π΅ β§ πΆ β ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))})) β (πΆ Β· π){β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π Β· π¦))}π) |
30 | 5, 6, 22, 29 | syl3anc 1369 | . 2 β’ (π β (πΆ Β· π){β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π Β· π¦))}π) |
31 | prjspnvs.e | . . . . 5 β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β π π₯ = (π Β· π¦))} | |
32 | 31, 3, 24, 12, 26 | prjspnerlem 41661 | . . . 4 β’ (πΎ β DivRing β βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π Β· π¦))}) |
33 | 1, 32 | syl 17 | . . 3 β’ (π β βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π Β· π¦))}) |
34 | 33 | breqd 5158 | . 2 β’ (π β ((πΆ Β· π) βΌ π β (πΆ Β· π){β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β (Baseβ(Scalarβπ))π₯ = (π Β· π¦))}π)) |
35 | 30, 34 | mpbird 256 | 1 β’ (π β (πΆ Β· π) βΌ π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 βwrex 3068 Vcvv 3472 β cdif 3944 {csn 4627 class class class wbr 5147 {copab 5209 βcfv 6542 (class class class)co 7411 0cc0 11112 ...cfz 13488 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 DivRingcdr 20500 LVecclvec 20857 freeLMod cfrlm 21520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-hom 17225 df-cco 17226 df-0g 17391 df-prds 17397 df-pws 17399 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-subrg 20459 df-drng 20502 df-lmod 20616 df-lss 20687 df-lvec 20858 df-sra 20930 df-rgmod 20931 df-dsmm 21506 df-frlm 21521 |
This theorem is referenced by: prjspner01 41669 |
Copyright terms: Public domain | W3C validator |