Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scottexs | Structured version Visualization version GIF version |
Description: Theorem scheme version of scottex 9574. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is a set. (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
scottexs | ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑧{𝑥 ∣ 𝜑} | |
2 | nfab1 2908 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥(rank‘𝑧) ⊆ (rank‘𝑦) | |
4 | 2, 3 | nfralw 3149 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) |
5 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) | |
6 | fveq2 6756 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥)) | |
7 | 6 | sseq1d 3948 | . . . . 5 ⊢ (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦))) |
8 | 7 | ralbidv 3120 | . . . 4 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))) |
9 | 1, 2, 4, 5, 8 | cbvrabw 3414 | . . 3 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} |
10 | df-rab 3072 | . . 3 ⊢ {𝑥 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} | |
11 | abid 2719 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
12 | df-ral 3068 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) | |
13 | df-sbc 3712 | . . . . . . . 8 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
14 | 13 | imbi1i 349 | . . . . . . 7 ⊢ (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) |
15 | 14 | albii 1823 | . . . . . 6 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) |
16 | 12, 15 | bitr4i 277 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
17 | 11, 16 | anbi12i 626 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
18 | 17 | abbii 2809 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
19 | 9, 10, 18 | 3eqtri 2770 | . 2 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
20 | scottex 9574 | . 2 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} ∈ V | |
21 | 19, 20 | eqeltrri 2836 | 1 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 {cab 2715 ∀wral 3063 {crab 3067 Vcvv 3422 [wsbc 3711 ⊆ wss 3883 ‘cfv 6418 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: hta 9586 |
Copyright terms: Public domain | W3C validator |