MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottexs Structured version   Visualization version   GIF version

Theorem scottexs 9840
Description: Theorem scheme version of scottex 9838. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottexs {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scottexs
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . 4 𝑧{𝑥𝜑}
2 nfab1 2893 . . . 4 𝑥{𝑥𝜑}
3 nfv 1914 . . . . 5 𝑥(rank‘𝑧) ⊆ (rank‘𝑦)
42, 3nfralw 3285 . . . 4 𝑥𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)
5 nfv 1914 . . . 4 𝑧𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)
6 fveq2 6858 . . . . . 6 (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥))
76sseq1d 3978 . . . . 5 (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
87ralbidv 3156 . . . 4 (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)))
91, 2, 4, 5, 8cbvrabw 3441 . . 3 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)}
10 df-rab 3406 . . 3 {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))}
11 abid 2711 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
12 df-ral 3045 . . . . . 6 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
13 df-sbc 3754 . . . . . . . 8 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
1413imbi1i 349 . . . . . . 7 (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1514albii 1819 . . . . . 6 (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1612, 15bitr4i 278 . . . . 5 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1711, 16anbi12i 628 . . . 4 ((𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))))
1817abbii 2796 . . 3 {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
199, 10, 183eqtri 2756 . 2 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
20 scottex 9838 . 2 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} ∈ V
2119, 20eqeltrri 2825 1 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  {cab 2707  wral 3044  {crab 3405  Vcvv 3447  [wsbc 3753  wss 3914  cfv 6511  rankcrnk 9716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718
This theorem is referenced by:  hta  9850
  Copyright terms: Public domain W3C validator