Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scottexs | Structured version Visualization version GIF version |
Description: Theorem scheme version of scottex 9352. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is a set. (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
scottexs | ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑧{𝑥 ∣ 𝜑} | |
2 | nfab1 2921 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥(rank‘𝑧) ⊆ (rank‘𝑦) | |
4 | 2, 3 | nfralw 3153 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) |
5 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑧∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) | |
6 | fveq2 6662 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥)) | |
7 | 6 | sseq1d 3925 | . . . . 5 ⊢ (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦))) |
8 | 7 | ralbidv 3126 | . . . 4 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))) |
9 | 1, 2, 4, 5, 8 | cbvrabw 3402 | . . 3 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} |
10 | df-rab 3079 | . . 3 ⊢ {𝑥 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} | |
11 | abid 2739 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
12 | df-ral 3075 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) | |
13 | df-sbc 3699 | . . . . . . . 8 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
14 | 13 | imbi1i 353 | . . . . . . 7 ⊢ (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) |
15 | 14 | albii 1821 | . . . . . 6 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) |
16 | 12, 15 | bitr4i 281 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
17 | 11, 16 | anbi12i 629 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
18 | 17 | abbii 2823 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
19 | 9, 10, 18 | 3eqtri 2785 | . 2 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
20 | scottex 9352 | . 2 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} ∈ V | |
21 | 19, 20 | eqeltrri 2849 | 1 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1536 ∈ wcel 2111 {cab 2735 ∀wral 3070 {crab 3074 Vcvv 3409 [wsbc 3698 ⊆ wss 3860 ‘cfv 6339 rankcrnk 9230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-reg 9094 ax-inf2 9142 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-r1 9231 df-rank 9232 |
This theorem is referenced by: hta 9364 |
Copyright terms: Public domain | W3C validator |