| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scottexs | Structured version Visualization version GIF version | ||
| Description: Theorem scheme version of scottex 9838. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is a set. (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| scottexs | ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑧{𝑥 ∣ 𝜑} | |
| 2 | nfab1 2893 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥(rank‘𝑧) ⊆ (rank‘𝑦) | |
| 4 | 2, 3 | nfralw 3285 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) |
| 5 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) | |
| 6 | fveq2 6858 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥)) | |
| 7 | 6 | sseq1d 3978 | . . . . 5 ⊢ (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 8 | 7 | ralbidv 3156 | . . . 4 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 9 | 1, 2, 4, 5, 8 | cbvrabw 3441 | . . 3 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} |
| 10 | df-rab 3406 | . . 3 ⊢ {𝑥 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} | |
| 11 | abid 2711 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 12 | df-ral 3045 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) | |
| 13 | df-sbc 3754 | . . . . . . . 8 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 14 | 13 | imbi1i 349 | . . . . . . 7 ⊢ (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 15 | 14 | albii 1819 | . . . . . 6 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 16 | 12, 15 | bitr4i 278 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
| 17 | 11, 16 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
| 18 | 17 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| 19 | 9, 10, 18 | 3eqtri 2756 | . 2 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| 20 | scottex 9838 | . 2 ⊢ {𝑧 ∈ {𝑥 ∣ 𝜑} ∣ ∀𝑦 ∈ {𝑥 ∣ 𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} ∈ V | |
| 21 | 19, 20 | eqeltrri 2825 | 1 ⊢ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3405 Vcvv 3447 [wsbc 3753 ⊆ wss 3914 ‘cfv 6511 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: hta 9850 |
| Copyright terms: Public domain | W3C validator |