MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem Structured version   Visualization version   GIF version

Theorem nmoleub2lem 25065
Description: Lemma for nmoleub2a 25068 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2lem.5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
nmoleub2lem.6 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
nmoleub2lem.7 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
Assertion
Ref Expression
nmoleub2lem (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑅,𝑦   𝑦,𝑇
Allowed substitution hints:   𝜓(𝑥)   𝑇(𝑥)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem nmoleub2lem
StepHypRef Expression
1 nmoleub2lem.7 . . . . 5 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
21adantlr 715 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
3 nmoleub2.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
43elin1d 4179 . . . . . . . . . . 11 (𝜑𝑇 ∈ NrmMod)
5 nlmngp 24616 . . . . . . . . . . 11 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmGrp)
76ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑇 ∈ NrmGrp)
8 nmoleub2.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
9 nmoleub2.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
10 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 20992 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
128, 11syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑉⟶(Base‘𝑇))
1312ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹:𝑉⟶(Base‘𝑇))
14 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑥𝑉)
1513, 14ffvelcdmd 7075 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐹𝑥) ∈ (Base‘𝑇))
16 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
1710, 16nmcl 24555 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
187, 15, 17syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
19 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
2019ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ+)
2118, 20rerpdivcld 13082 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ)
2221rexrd 11285 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ*)
23 nmoleub2.s . . . . . . . . . 10 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4179 . . . . . . . . 9 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 24616 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
27 lmghm 20989 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
288, 27syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
29 nmoleub2.n . . . . . . . . 9 𝑁 = (𝑆 normOp 𝑇)
3029nmocl 24659 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
3126, 6, 28, 30syl3anc 1373 . . . . . . 7 (𝜑 → (𝑁𝐹) ∈ ℝ*)
3231ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ∈ ℝ*)
33 nmoleub2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
3433ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐴 ∈ ℝ*)
3520rpred 13051 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ)
36 rexmul 13287 . . . . . . . . . 10 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ ∧ 𝑅 ∈ ℝ) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3721, 35, 36syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3818recnd 11263 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℂ)
3935recnd 11263 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℂ)
4020rpne0d 13056 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ≠ 0)
4138, 39, 40divcan1d 12018 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅) = (𝑀‘(𝐹𝑥)))
4237, 41eqtrd 2770 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (𝑀‘(𝐹𝑥)))
4318rexrd 11285 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ*)
4426ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑆 ∈ NrmGrp)
45 nmoleub2.l . . . . . . . . . . . . 13 𝐿 = (norm‘𝑆)
469, 45nmcl 24555 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4744, 14, 46syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ)
4847rexrd 11285 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ*)
4932, 48xmulcld 13318 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ∈ ℝ*)
5020rpxrd 13052 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ*)
5132, 50xmulcld 13318 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e 𝑅) ∈ ℝ*)
5228ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5329, 9, 45, 16nmoix 24668 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5444, 7, 52, 14, 53syl31anc 1375 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5529nmoge0 24660 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
5626, 6, 28, 55syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐹))
5731, 56jca 511 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
5857ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
59 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ≤ 𝑅)
60 xlemul2a 13305 . . . . . . . . . 10 ((((𝐿𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹))) ∧ (𝐿𝑥) ≤ 𝑅) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6148, 50, 58, 59, 60syl31anc 1375 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6243, 49, 51, 54, 61xrletrd 13178 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6342, 62eqbrtrd 5141 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅))
64 xlemul1 13306 . . . . . . . 8 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ* ∧ (𝑁𝐹) ∈ ℝ*𝑅 ∈ ℝ+) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6522, 32, 20, 64syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6663, 65mpbird 257 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹))
67 simplr 768 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ≤ 𝐴)
6822, 32, 34, 66, 67xrletrd 13178 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)
6968expr 456 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → ((𝐿𝑥) ≤ 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
702, 69syld 47 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
7170ralrimiva 3132 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
72 eqid 2735 . . . 4 (0g𝑆) = (0g𝑆)
7326ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
746ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
7528ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
76 simpr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
77 nmoleub2lem.5 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
7877adantr 480 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝐴)
79 nmoleub2lem.6 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
8029, 9, 45, 16, 72, 73, 74, 75, 76, 78, 79nmolb2d 24657 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8131ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
82 pnfge 13146 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8381, 82syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
84 simpr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8583, 84breqtrrd 5147 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
8633adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ∈ ℝ*)
87 ge0nemnf 13189 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
8886, 77, 87syl2anc 584 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ≠ -∞)
8986, 88jca 511 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
90 xrnemnf 13133 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9189, 90sylib 218 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9280, 85, 91mpjaodan 960 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9371, 92impbida 800 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  cin 3925   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129   · cmul 11134  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268  cle 11270   / cdiv 11894  +crp 13008   ·e cxmu 13127  Basecbs 17228  Scalarcsca 17274  0gc0g 17453   GrpHom cghm 19195   LMHom clmhm 20977  normcnm 24515  NrmGrpcngp 24516  NrmModcnlm 24519   normOp cnmo 24644  ℂModcclm 25013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ico 13368  df-0g 17455  df-topgen 17457  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-ghm 19196  df-lmhm 20980  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-xms 24259  df-ms 24260  df-nm 24521  df-ngp 24522  df-nlm 24525  df-nmo 24647  df-nghm 24648
This theorem is referenced by:  nmoleub2lem2  25067  nmoleub3  25070
  Copyright terms: Public domain W3C validator