MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem Structured version   Visualization version   GIF version

Theorem nmoleub2lem 25147
Description: Lemma for nmoleub2a 25150 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2lem.5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
nmoleub2lem.6 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
nmoleub2lem.7 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
Assertion
Ref Expression
nmoleub2lem (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑅,𝑦   𝑦,𝑇
Allowed substitution hints:   𝜓(𝑥)   𝑇(𝑥)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem nmoleub2lem
StepHypRef Expression
1 nmoleub2lem.7 . . . . 5 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
21adantlr 715 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
3 nmoleub2.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
43elin1d 4204 . . . . . . . . . . 11 (𝜑𝑇 ∈ NrmMod)
5 nlmngp 24698 . . . . . . . . . . 11 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmGrp)
76ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑇 ∈ NrmGrp)
8 nmoleub2.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
9 nmoleub2.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
10 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 21033 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
128, 11syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑉⟶(Base‘𝑇))
1312ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹:𝑉⟶(Base‘𝑇))
14 simprl 771 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑥𝑉)
1513, 14ffvelcdmd 7105 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐹𝑥) ∈ (Base‘𝑇))
16 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
1710, 16nmcl 24629 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
187, 15, 17syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
19 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
2019ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ+)
2118, 20rerpdivcld 13108 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ)
2221rexrd 11311 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ*)
23 nmoleub2.s . . . . . . . . . 10 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4204 . . . . . . . . 9 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 24698 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
27 lmghm 21030 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
288, 27syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
29 nmoleub2.n . . . . . . . . 9 𝑁 = (𝑆 normOp 𝑇)
3029nmocl 24741 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
3126, 6, 28, 30syl3anc 1373 . . . . . . 7 (𝜑 → (𝑁𝐹) ∈ ℝ*)
3231ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ∈ ℝ*)
33 nmoleub2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
3433ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐴 ∈ ℝ*)
3520rpred 13077 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ)
36 rexmul 13313 . . . . . . . . . 10 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ ∧ 𝑅 ∈ ℝ) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3721, 35, 36syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3818recnd 11289 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℂ)
3935recnd 11289 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℂ)
4020rpne0d 13082 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ≠ 0)
4138, 39, 40divcan1d 12044 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅) = (𝑀‘(𝐹𝑥)))
4237, 41eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (𝑀‘(𝐹𝑥)))
4318rexrd 11311 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ*)
4426ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑆 ∈ NrmGrp)
45 nmoleub2.l . . . . . . . . . . . . 13 𝐿 = (norm‘𝑆)
469, 45nmcl 24629 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4744, 14, 46syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ)
4847rexrd 11311 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ*)
4932, 48xmulcld 13344 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ∈ ℝ*)
5020rpxrd 13078 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ*)
5132, 50xmulcld 13344 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e 𝑅) ∈ ℝ*)
5228ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5329, 9, 45, 16nmoix 24750 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5444, 7, 52, 14, 53syl31anc 1375 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5529nmoge0 24742 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
5626, 6, 28, 55syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐹))
5731, 56jca 511 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
5857ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
59 simprr 773 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ≤ 𝑅)
60 xlemul2a 13331 . . . . . . . . . 10 ((((𝐿𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹))) ∧ (𝐿𝑥) ≤ 𝑅) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6148, 50, 58, 59, 60syl31anc 1375 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6243, 49, 51, 54, 61xrletrd 13204 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6342, 62eqbrtrd 5165 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅))
64 xlemul1 13332 . . . . . . . 8 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ* ∧ (𝑁𝐹) ∈ ℝ*𝑅 ∈ ℝ+) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6522, 32, 20, 64syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6663, 65mpbird 257 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹))
67 simplr 769 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ≤ 𝐴)
6822, 32, 34, 66, 67xrletrd 13204 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)
6968expr 456 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → ((𝐿𝑥) ≤ 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
702, 69syld 47 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
7170ralrimiva 3146 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
72 eqid 2737 . . . 4 (0g𝑆) = (0g𝑆)
7326ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
746ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
7528ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
76 simpr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
77 nmoleub2lem.5 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
7877adantr 480 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝐴)
79 nmoleub2lem.6 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
8029, 9, 45, 16, 72, 73, 74, 75, 76, 78, 79nmolb2d 24739 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8131ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
82 pnfge 13172 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8381, 82syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
84 simpr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8583, 84breqtrrd 5171 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
8633adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ∈ ℝ*)
87 ge0nemnf 13215 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
8886, 77, 87syl2anc 584 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ≠ -∞)
8986, 88jca 511 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
90 xrnemnf 13159 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9189, 90sylib 218 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9280, 85, 91mpjaodan 961 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9371, 92impbida 801 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  cin 3950   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155   · cmul 11160  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294  cle 11296   / cdiv 11920  +crp 13034   ·e cxmu 13153  Basecbs 17247  Scalarcsca 17300  0gc0g 17484   GrpHom cghm 19230   LMHom clmhm 21018  normcnm 24589  NrmGrpcngp 24590  NrmModcnlm 24593   normOp cnmo 24726  ℂModcclm 25095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-0g 17486  df-topgen 17488  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-ghm 19231  df-lmhm 21021  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-nlm 24599  df-nmo 24729  df-nghm 24730
This theorem is referenced by:  nmoleub2lem2  25149  nmoleub3  25152
  Copyright terms: Public domain W3C validator