MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem Structured version   Visualization version   GIF version

Theorem nmoleub2lem 24183
Description: Lemma for nmoleub2a 24186 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2lem.5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
nmoleub2lem.6 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
nmoleub2lem.7 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
Assertion
Ref Expression
nmoleub2lem (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑅,𝑦   𝑦,𝑇
Allowed substitution hints:   𝜓(𝑥)   𝑇(𝑥)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem nmoleub2lem
StepHypRef Expression
1 nmoleub2lem.7 . . . . 5 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
21adantlr 711 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
3 nmoleub2.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
43elin1d 4128 . . . . . . . . . . 11 (𝜑𝑇 ∈ NrmMod)
5 nlmngp 23747 . . . . . . . . . . 11 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmGrp)
76ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑇 ∈ NrmGrp)
8 nmoleub2.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
9 nmoleub2.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
10 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 20211 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
128, 11syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑉⟶(Base‘𝑇))
1312ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹:𝑉⟶(Base‘𝑇))
14 simprl 767 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑥𝑉)
1513, 14ffvelrnd 6944 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐹𝑥) ∈ (Base‘𝑇))
16 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
1710, 16nmcl 23678 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
187, 15, 17syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
19 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
2019ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ+)
2118, 20rerpdivcld 12732 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ)
2221rexrd 10956 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ*)
23 nmoleub2.s . . . . . . . . . 10 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4128 . . . . . . . . 9 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 23747 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
27 lmghm 20208 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
288, 27syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
29 nmoleub2.n . . . . . . . . 9 𝑁 = (𝑆 normOp 𝑇)
3029nmocl 23790 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
3126, 6, 28, 30syl3anc 1369 . . . . . . 7 (𝜑 → (𝑁𝐹) ∈ ℝ*)
3231ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ∈ ℝ*)
33 nmoleub2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
3433ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐴 ∈ ℝ*)
3520rpred 12701 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ)
36 rexmul 12934 . . . . . . . . . 10 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ ∧ 𝑅 ∈ ℝ) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3721, 35, 36syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3818recnd 10934 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℂ)
3935recnd 10934 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℂ)
4020rpne0d 12706 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ≠ 0)
4138, 39, 40divcan1d 11682 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅) = (𝑀‘(𝐹𝑥)))
4237, 41eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (𝑀‘(𝐹𝑥)))
4318rexrd 10956 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ*)
4426ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑆 ∈ NrmGrp)
45 nmoleub2.l . . . . . . . . . . . . 13 𝐿 = (norm‘𝑆)
469, 45nmcl 23678 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4744, 14, 46syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ)
4847rexrd 10956 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ*)
4932, 48xmulcld 12965 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ∈ ℝ*)
5020rpxrd 12702 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ*)
5132, 50xmulcld 12965 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e 𝑅) ∈ ℝ*)
5228ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5329, 9, 45, 16nmoix 23799 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5444, 7, 52, 14, 53syl31anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5529nmoge0 23791 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
5626, 6, 28, 55syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐹))
5731, 56jca 511 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
5857ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
59 simprr 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ≤ 𝑅)
60 xlemul2a 12952 . . . . . . . . . 10 ((((𝐿𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹))) ∧ (𝐿𝑥) ≤ 𝑅) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6148, 50, 58, 59, 60syl31anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6243, 49, 51, 54, 61xrletrd 12825 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6342, 62eqbrtrd 5092 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅))
64 xlemul1 12953 . . . . . . . 8 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ* ∧ (𝑁𝐹) ∈ ℝ*𝑅 ∈ ℝ+) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6522, 32, 20, 64syl3anc 1369 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6663, 65mpbird 256 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹))
67 simplr 765 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ≤ 𝐴)
6822, 32, 34, 66, 67xrletrd 12825 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)
6968expr 456 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → ((𝐿𝑥) ≤ 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
702, 69syld 47 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
7170ralrimiva 3107 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
72 eqid 2738 . . . 4 (0g𝑆) = (0g𝑆)
7326ad2antrr 722 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
746ad2antrr 722 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
7528ad2antrr 722 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
76 simpr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
77 nmoleub2lem.5 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
7877adantr 480 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝐴)
79 nmoleub2lem.6 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
8029, 9, 45, 16, 72, 73, 74, 75, 76, 78, 79nmolb2d 23788 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8131ad2antrr 722 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
82 pnfge 12795 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8381, 82syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
84 simpr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8583, 84breqtrrd 5098 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
8633adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ∈ ℝ*)
87 ge0nemnf 12836 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
8886, 77, 87syl2anc 583 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ≠ -∞)
8986, 88jca 511 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
90 xrnemnf 12782 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9189, 90sylib 217 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9280, 85, 91mpjaodan 955 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9371, 92impbida 797 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  cin 3882   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939  cle 10941   / cdiv 11562  +crp 12659   ·e cxmu 12776  Basecbs 16840  Scalarcsca 16891  0gc0g 17067   GrpHom cghm 18746   LMHom clmhm 20196  normcnm 23638  NrmGrpcngp 23639  NrmModcnlm 23642   normOp cnmo 23775  ℂModcclm 24131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-lmhm 20199  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nlm 23648  df-nmo 23778  df-nghm 23779
This theorem is referenced by:  nmoleub2lem2  24185  nmoleub3  24188
  Copyright terms: Public domain W3C validator