MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem Structured version   Visualization version   GIF version

Theorem nmoleub2lem 24011
Description: Lemma for nmoleub2a 24014 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2lem.5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
nmoleub2lem.6 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
nmoleub2lem.7 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
Assertion
Ref Expression
nmoleub2lem (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐿,𝑦   𝑥,𝑁,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑅,𝑦   𝑦,𝑇
Allowed substitution hints:   𝜓(𝑥)   𝑇(𝑥)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem nmoleub2lem
StepHypRef Expression
1 nmoleub2lem.7 . . . . 5 ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
21adantlr 715 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))
3 nmoleub2.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
43elin1d 4112 . . . . . . . . . . 11 (𝜑𝑇 ∈ NrmMod)
5 nlmngp 23575 . . . . . . . . . . 11 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ NrmGrp)
76ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑇 ∈ NrmGrp)
8 nmoleub2.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
9 nmoleub2.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
10 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 20071 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
128, 11syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑉⟶(Base‘𝑇))
1312ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹:𝑉⟶(Base‘𝑇))
14 simprl 771 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑥𝑉)
1513, 14ffvelrnd 6905 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐹𝑥) ∈ (Base‘𝑇))
16 nmoleub2.m . . . . . . . . . 10 𝑀 = (norm‘𝑇)
1710, 16nmcl 23514 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
187, 15, 17syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ)
19 nmoleub2.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
2019ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ+)
2118, 20rerpdivcld 12659 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ)
2221rexrd 10883 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ*)
23 nmoleub2.s . . . . . . . . . 10 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
2423elin1d 4112 . . . . . . . . 9 (𝜑𝑆 ∈ NrmMod)
25 nlmngp 23575 . . . . . . . . 9 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
2624, 25syl 17 . . . . . . . 8 (𝜑𝑆 ∈ NrmGrp)
27 lmghm 20068 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
288, 27syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
29 nmoleub2.n . . . . . . . . 9 𝑁 = (𝑆 normOp 𝑇)
3029nmocl 23618 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
3126, 6, 28, 30syl3anc 1373 . . . . . . 7 (𝜑 → (𝑁𝐹) ∈ ℝ*)
3231ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ∈ ℝ*)
33 nmoleub2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
3433ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐴 ∈ ℝ*)
3520rpred 12628 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ)
36 rexmul 12861 . . . . . . . . . 10 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ ∧ 𝑅 ∈ ℝ) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3721, 35, 36syl2anc 587 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅))
3818recnd 10861 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℂ)
3935recnd 10861 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℂ)
4020rpne0d 12633 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ≠ 0)
4138, 39, 40divcan1d 11609 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) · 𝑅) = (𝑀‘(𝐹𝑥)))
4237, 41eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) = (𝑀‘(𝐹𝑥)))
4318rexrd 10883 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ∈ ℝ*)
4426ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑆 ∈ NrmGrp)
45 nmoleub2.l . . . . . . . . . . . . 13 𝐿 = (norm‘𝑆)
469, 45nmcl 23514 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4744, 14, 46syl2anc 587 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ)
4847rexrd 10883 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ∈ ℝ*)
4932, 48xmulcld 12892 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ∈ ℝ*)
5020rpxrd 12629 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝑅 ∈ ℝ*)
5132, 50xmulcld 12892 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e 𝑅) ∈ ℝ*)
5228ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5329, 9, 45, 16nmoix 23627 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑥𝑉) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5444, 7, 52, 14, 53syl31anc 1375 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e (𝐿𝑥)))
5529nmoge0 23619 . . . . . . . . . . . . 13 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
5626, 6, 28, 55syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐹))
5731, 56jca 515 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
5857ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)))
59 simprr 773 . . . . . . . . . 10 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝐿𝑥) ≤ 𝑅)
60 xlemul2a 12879 . . . . . . . . . 10 ((((𝐿𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ ((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹))) ∧ (𝐿𝑥) ≤ 𝑅) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6148, 50, 58, 59, 60syl31anc 1375 . . . . . . . . 9 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑁𝐹) ·e (𝐿𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6243, 49, 51, 54, 61xrletrd 12752 . . . . . . . 8 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑀‘(𝐹𝑥)) ≤ ((𝑁𝐹) ·e 𝑅))
6342, 62eqbrtrd 5075 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅))
64 xlemul1 12880 . . . . . . . 8 ((((𝑀‘(𝐹𝑥)) / 𝑅) ∈ ℝ* ∧ (𝑁𝐹) ∈ ℝ*𝑅 ∈ ℝ+) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6522, 32, 20, 64syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹) ↔ (((𝑀‘(𝐹𝑥)) / 𝑅) ·e 𝑅) ≤ ((𝑁𝐹) ·e 𝑅)))
6663, 65mpbird 260 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ (𝑁𝐹))
67 simplr 769 . . . . . 6 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → (𝑁𝐹) ≤ 𝐴)
6822, 32, 34, 66, 67xrletrd 12752 . . . . 5 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ (𝑥𝑉 ∧ (𝐿𝑥) ≤ 𝑅)) → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)
6968expr 460 . . . 4 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → ((𝐿𝑥) ≤ 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
702, 69syld 47 . . 3 (((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) ∧ 𝑥𝑉) → (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
7170ralrimiva 3105 . 2 ((𝜑 ∧ (𝑁𝐹) ≤ 𝐴) → ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
72 eqid 2737 . . . 4 (0g𝑆) = (0g𝑆)
7326ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ NrmGrp)
746ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝑇 ∈ NrmGrp)
7528ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
76 simpr 488 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
77 nmoleub2lem.5 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
7877adantr 484 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝐴)
79 nmoleub2lem.6 . . . 4 ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
8029, 9, 45, 16, 72, 73, 74, 75, 76, 78, 79nmolb2d 23616 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) → (𝑁𝐹) ≤ 𝐴)
8131ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ∈ ℝ*)
82 pnfge 12722 . . . . 5 ((𝑁𝐹) ∈ ℝ* → (𝑁𝐹) ≤ +∞)
8381, 82syl 17 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ +∞)
84 simpr 488 . . . 4 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8583, 84breqtrrd 5081 . . 3 (((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 = +∞) → (𝑁𝐹) ≤ 𝐴)
8633adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ∈ ℝ*)
87 ge0nemnf 12763 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
8886, 77, 87syl2anc 587 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝐴 ≠ -∞)
8986, 88jca 515 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
90 xrnemnf 12709 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9189, 90sylib 221 . . 3 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
9280, 85, 91mpjaodan 959 . 2 ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑁𝐹) ≤ 𝐴)
9371, 92impbida 801 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940  wral 3061  cin 3865   class class class wbr 5053  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729   · cmul 10734  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866  cle 10868   / cdiv 11489  +crp 12586   ·e cxmu 12703  Basecbs 16760  Scalarcsca 16805  0gc0g 16944   GrpHom cghm 18619   LMHom clmhm 20056  normcnm 23474  NrmGrpcngp 23475  NrmModcnlm 23478   normOp cnmo 23603  ℂModcclm 23959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-0g 16946  df-topgen 16948  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-ghm 18620  df-lmhm 20059  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-xms 23218  df-ms 23219  df-nm 23480  df-ngp 23481  df-nlm 23484  df-nmo 23606  df-nghm 23607
This theorem is referenced by:  nmoleub2lem2  24013  nmoleub3  24016
  Copyright terms: Public domain W3C validator