MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem2 Structured version   Visualization version   GIF version

Theorem nmoleub2lem2 23649
Description: Lemma for nmoleub2a 23650 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem2.6 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
nmoleub2lem2.7 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
Assertion
Ref Expression
nmoleub2lem2 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)   𝑂(𝑥)

Proof of Theorem nmoleub2lem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 lmghm 19734 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
13 eqid 2821 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
14 eqid 2821 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 18304 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
169, 12, 153syl 18 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝑆)) = (0g𝑇))
1716fveq2d 6668 . . . . . . 7 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
188elin1d 4174 . . . . . . . 8 (𝜑𝑇 ∈ NrmMod)
19 nlmngp 23215 . . . . . . . 8 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
204, 14nm0 23167 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 19, 203syl 18 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2856 . . . . . 6 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2322adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2423oveq1d 7160 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = (0 / 𝑅))
2511adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℝ+)
2625rpcnd 12423 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℂ)
2725rpne0d 12426 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ≠ 0)
2826, 27div0d 11404 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0 / 𝑅) = 0)
2924, 28eqtrd 2856 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = 0)
307elin1d 4174 . . . . . . 7 (𝜑𝑆 ∈ NrmMod)
31 nlmngp 23215 . . . . . . 7 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
323, 13nm0 23167 . . . . . . 7 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
3330, 31, 323syl 18 . . . . . 6 (𝜑 → (𝐿‘(0g𝑆)) = 0)
3433adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) = 0)
3525rpgt0d 12424 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 < 𝑅)
3634, 35eqbrtrd 5080 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) < 𝑅)
37 fveq2 6664 . . . . . . 7 (𝑥 = (0g𝑆) → (𝐿𝑥) = (𝐿‘(0g𝑆)))
3837breq1d 5068 . . . . . 6 (𝑥 = (0g𝑆) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(0g𝑆)) < 𝑅))
39 2fveq3 6669 . . . . . . . 8 (𝑥 = (0g𝑆) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(0g𝑆))))
4039oveq1d 7160 . . . . . . 7 (𝑥 = (0g𝑆) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅))
4140breq1d 5068 . . . . . 6 (𝑥 = (0g𝑆) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
4238, 41imbi12d 346 . . . . 5 (𝑥 = (0g𝑆) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)))
4330, 31syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ NrmGrp)
442, 3nmcl 23154 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4543, 44sylan 580 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4611adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
4746rpred 12421 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
48 nmoleub2lem2.7 . . . . . . . . 9 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
4945, 47, 48syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
5049imim1d 82 . . . . . . 7 ((𝜑𝑥𝑉) → (((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5150ralimdva 3177 . . . . . 6 (𝜑 → (∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5251imp 407 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
53 ngpgrp 23137 . . . . . . 7 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
542, 13grpidcl 18071 . . . . . . 7 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
5543, 53, 543syl 18 . . . . . 6 (𝜑 → (0g𝑆) ∈ 𝑉)
5655adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0g𝑆) ∈ 𝑉)
5742, 52, 56rspcdva 3624 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
5836, 57mpd 15 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)
5929, 58eqbrtrrd 5082 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
60 simp-4l 779 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝜑)
6160, 7syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑆 ∈ (NrmMod ∩ ℂMod))
6260, 8syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑇 ∈ (NrmMod ∩ ℂMod))
6360, 9syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
6460, 10syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ*)
6560, 11syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑅 ∈ ℝ+)
66 nmoleub2a.5 . . . . 5 (𝜑 → ℚ ⊆ 𝐾)
6760, 66syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ℚ ⊆ 𝐾)
68 eqid 2821 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
69 simpllr 772 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ)
7059ad3antrrr 726 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 0 ≤ 𝐴)
71 simplrl 773 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦𝑉)
72 simplrr 774 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦 ≠ (0g𝑆))
7352ad3antrrr 726 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
74 fveq2 6664 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝐿𝑥) = (𝐿‘(𝑧( ·𝑠𝑆)𝑦)))
7574breq1d 5068 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅))
76 2fveq3 6669 . . . . . . . . 9 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))))
7776oveq1d 7160 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅))
7877breq1d 5068 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
7975, 78imbi12d 346 . . . . . 6 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8079rspccv 3619 . . . . 5 (∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8173, 80syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
82 simpr 485 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
831, 2, 3, 4, 5, 6, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 81, 82nmoleub2lem3 23648 . . 3 ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
84 iman 402 . . 3 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) ↔ ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
8583, 84mpbir 232 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
86 nmoleub2lem2.6 . . 3 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
8745, 47, 86syl2anc 584 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 59, 85, 87nmoleub2lem 23647 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3016  wral 3138  cin 3934  wss 3935   class class class wbr 5058  cfv 6349  (class class class)co 7145  cr 10525  0cc0 10526   · cmul 10531  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cq 12337  +crp 12379  Basecbs 16473  Scalarcsca 16558   ·𝑠 cvsca 16559  0gc0g 16703  Grpcgrp 18043   GrpHom cghm 18295   LMHom clmhm 19722  normcnm 23115  NrmGrpcngp 23116  NrmModcnlm 23119   normOp cnmo 23243  ℂModcclm 23595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ico 12734  df-fz 12883  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-0g 16705  df-topgen 16707  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-grp 18046  df-subg 18216  df-ghm 18296  df-cmn 18839  df-mgp 19171  df-ring 19230  df-cring 19231  df-subrg 19464  df-lmod 19567  df-lmhm 19725  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-xms 22859  df-ms 22860  df-nm 23121  df-ngp 23122  df-nlm 23125  df-nmo 23246  df-nghm 23247  df-clm 23596
This theorem is referenced by:  nmoleub2a  23650  nmoleub2b  23651
  Copyright terms: Public domain W3C validator