MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem2 Structured version   Visualization version   GIF version

Theorem nmoleub2lem2 24561
Description: Lemma for nmoleub2a 24562 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem2.6 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
nmoleub2lem2.7 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
Assertion
Ref Expression
nmoleub2lem2 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)   𝑂(𝑥)

Proof of Theorem nmoleub2lem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 lmghm 20591 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
13 eqid 2731 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
14 eqid 2731 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 19064 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
169, 12, 153syl 18 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝑆)) = (0g𝑇))
1716fveq2d 6882 . . . . . . 7 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
188elin1d 4194 . . . . . . . 8 (𝜑𝑇 ∈ NrmMod)
19 nlmngp 24123 . . . . . . . 8 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
204, 14nm0 24067 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 19, 203syl 18 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2771 . . . . . 6 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2322adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2423oveq1d 7408 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = (0 / 𝑅))
2511adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℝ+)
2625rpcnd 13000 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℂ)
2725rpne0d 13003 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ≠ 0)
2826, 27div0d 11971 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0 / 𝑅) = 0)
2924, 28eqtrd 2771 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = 0)
307elin1d 4194 . . . . . . 7 (𝜑𝑆 ∈ NrmMod)
31 nlmngp 24123 . . . . . . 7 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
323, 13nm0 24067 . . . . . . 7 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
3330, 31, 323syl 18 . . . . . 6 (𝜑 → (𝐿‘(0g𝑆)) = 0)
3433adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) = 0)
3525rpgt0d 13001 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 < 𝑅)
3634, 35eqbrtrd 5163 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) < 𝑅)
37 fveq2 6878 . . . . . . 7 (𝑥 = (0g𝑆) → (𝐿𝑥) = (𝐿‘(0g𝑆)))
3837breq1d 5151 . . . . . 6 (𝑥 = (0g𝑆) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(0g𝑆)) < 𝑅))
39 2fveq3 6883 . . . . . . . 8 (𝑥 = (0g𝑆) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(0g𝑆))))
4039oveq1d 7408 . . . . . . 7 (𝑥 = (0g𝑆) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅))
4140breq1d 5151 . . . . . 6 (𝑥 = (0g𝑆) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
4238, 41imbi12d 344 . . . . 5 (𝑥 = (0g𝑆) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)))
4330, 31syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ NrmGrp)
442, 3nmcl 24054 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4543, 44sylan 580 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4611adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
4746rpred 12998 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
48 nmoleub2lem2.7 . . . . . . . . 9 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
4945, 47, 48syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
5049imim1d 82 . . . . . . 7 ((𝜑𝑥𝑉) → (((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5150ralimdva 3166 . . . . . 6 (𝜑 → (∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5251imp 407 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
53 ngpgrp 24037 . . . . . . 7 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
542, 13grpidcl 18825 . . . . . . 7 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
5543, 53, 543syl 18 . . . . . 6 (𝜑 → (0g𝑆) ∈ 𝑉)
5655adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0g𝑆) ∈ 𝑉)
5742, 52, 56rspcdva 3610 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
5836, 57mpd 15 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)
5929, 58eqbrtrrd 5165 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
60 simp-4l 781 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝜑)
6160, 7syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑆 ∈ (NrmMod ∩ ℂMod))
6260, 8syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑇 ∈ (NrmMod ∩ ℂMod))
6360, 9syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
6460, 10syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ*)
6560, 11syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑅 ∈ ℝ+)
66 nmoleub2a.5 . . . . 5 (𝜑 → ℚ ⊆ 𝐾)
6760, 66syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ℚ ⊆ 𝐾)
68 eqid 2731 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
69 simpllr 774 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ)
7059ad3antrrr 728 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 0 ≤ 𝐴)
71 simplrl 775 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦𝑉)
72 simplrr 776 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦 ≠ (0g𝑆))
7352ad3antrrr 728 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
74 fveq2 6878 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝐿𝑥) = (𝐿‘(𝑧( ·𝑠𝑆)𝑦)))
7574breq1d 5151 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅))
76 2fveq3 6883 . . . . . . . . 9 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))))
7776oveq1d 7408 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅))
7877breq1d 5151 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
7975, 78imbi12d 344 . . . . . 6 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8079rspccv 3606 . . . . 5 (∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8173, 80syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
82 simpr 485 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
831, 2, 3, 4, 5, 6, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 81, 82nmoleub2lem3 24560 . . 3 ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
84 iman 402 . . 3 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) ↔ ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
8583, 84mpbir 230 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
86 nmoleub2lem2.6 . . 3 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
8745, 47, 86syl2anc 584 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 59, 85, 87nmoleub2lem 24559 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  cin 3943  wss 3944   class class class wbr 5141  cfv 6532  (class class class)co 7393  cr 11091  0cc0 11092   · cmul 11097  *cxr 11229   < clt 11230  cle 11231   / cdiv 11853  cq 12914  +crp 12956  Basecbs 17126  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17367  Grpcgrp 18794   GrpHom cghm 19055   LMHom clmhm 20579  normcnm 24014  NrmGrpcngp 24015  NrmModcnlm 24018   normOp cnmo 24151  ℂModcclm 24507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ico 13312  df-fz 13467  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17369  df-topgen 17371  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-subg 18975  df-ghm 19056  df-cmn 19614  df-mgp 19947  df-ring 20016  df-cring 20017  df-subrg 20310  df-lmod 20422  df-lmhm 20582  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-xms 23755  df-ms 23756  df-nm 24020  df-ngp 24021  df-nlm 24024  df-nmo 24154  df-nghm 24155  df-clm 24508
This theorem is referenced by:  nmoleub2a  24562  nmoleub2b  24563
  Copyright terms: Public domain W3C validator