MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem2 Structured version   Visualization version   GIF version

Theorem nmoleub2lem2 23721
Description: Lemma for nmoleub2a 23722 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem2.6 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
nmoleub2lem2.7 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
Assertion
Ref Expression
nmoleub2lem2 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)   𝑂(𝑥)

Proof of Theorem nmoleub2lem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 lmghm 19796 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
13 eqid 2798 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
14 eqid 2798 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 18356 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
169, 12, 153syl 18 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝑆)) = (0g𝑇))
1716fveq2d 6649 . . . . . . 7 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
188elin1d 4125 . . . . . . . 8 (𝜑𝑇 ∈ NrmMod)
19 nlmngp 23283 . . . . . . . 8 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
204, 14nm0 23235 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 19, 203syl 18 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2833 . . . . . 6 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2322adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2423oveq1d 7150 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = (0 / 𝑅))
2511adantr 484 . . . . . 6 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℝ+)
2625rpcnd 12421 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℂ)
2725rpne0d 12424 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ≠ 0)
2826, 27div0d 11404 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0 / 𝑅) = 0)
2924, 28eqtrd 2833 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = 0)
307elin1d 4125 . . . . . . 7 (𝜑𝑆 ∈ NrmMod)
31 nlmngp 23283 . . . . . . 7 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
323, 13nm0 23235 . . . . . . 7 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
3330, 31, 323syl 18 . . . . . 6 (𝜑 → (𝐿‘(0g𝑆)) = 0)
3433adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) = 0)
3525rpgt0d 12422 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 < 𝑅)
3634, 35eqbrtrd 5052 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) < 𝑅)
37 fveq2 6645 . . . . . . 7 (𝑥 = (0g𝑆) → (𝐿𝑥) = (𝐿‘(0g𝑆)))
3837breq1d 5040 . . . . . 6 (𝑥 = (0g𝑆) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(0g𝑆)) < 𝑅))
39 2fveq3 6650 . . . . . . . 8 (𝑥 = (0g𝑆) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(0g𝑆))))
4039oveq1d 7150 . . . . . . 7 (𝑥 = (0g𝑆) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅))
4140breq1d 5040 . . . . . 6 (𝑥 = (0g𝑆) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
4238, 41imbi12d 348 . . . . 5 (𝑥 = (0g𝑆) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)))
4330, 31syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ NrmGrp)
442, 3nmcl 23222 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4543, 44sylan 583 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4611adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
4746rpred 12419 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
48 nmoleub2lem2.7 . . . . . . . . 9 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
4945, 47, 48syl2anc 587 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
5049imim1d 82 . . . . . . 7 ((𝜑𝑥𝑉) → (((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5150ralimdva 3144 . . . . . 6 (𝜑 → (∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5251imp 410 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
53 ngpgrp 23205 . . . . . . 7 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
542, 13grpidcl 18123 . . . . . . 7 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
5543, 53, 543syl 18 . . . . . 6 (𝜑 → (0g𝑆) ∈ 𝑉)
5655adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0g𝑆) ∈ 𝑉)
5742, 52, 56rspcdva 3573 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
5836, 57mpd 15 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)
5929, 58eqbrtrrd 5054 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
60 simp-4l 782 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝜑)
6160, 7syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑆 ∈ (NrmMod ∩ ℂMod))
6260, 8syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑇 ∈ (NrmMod ∩ ℂMod))
6360, 9syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
6460, 10syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ*)
6560, 11syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑅 ∈ ℝ+)
66 nmoleub2a.5 . . . . 5 (𝜑 → ℚ ⊆ 𝐾)
6760, 66syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ℚ ⊆ 𝐾)
68 eqid 2798 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
69 simpllr 775 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ)
7059ad3antrrr 729 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 0 ≤ 𝐴)
71 simplrl 776 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦𝑉)
72 simplrr 777 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦 ≠ (0g𝑆))
7352ad3antrrr 729 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
74 fveq2 6645 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝐿𝑥) = (𝐿‘(𝑧( ·𝑠𝑆)𝑦)))
7574breq1d 5040 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅))
76 2fveq3 6650 . . . . . . . . 9 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))))
7776oveq1d 7150 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅))
7877breq1d 5040 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
7975, 78imbi12d 348 . . . . . 6 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8079rspccv 3568 . . . . 5 (∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8173, 80syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
82 simpr 488 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
831, 2, 3, 4, 5, 6, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 81, 82nmoleub2lem3 23720 . . 3 ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
84 iman 405 . . 3 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) ↔ ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
8583, 84mpbir 234 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
86 nmoleub2lem2.6 . . 3 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
8745, 47, 86syl2anc 587 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 59, 85, 87nmoleub2lem 23719 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  cin 3880  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   · cmul 10531  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cq 12336  +crp 12377  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095   GrpHom cghm 18347   LMHom clmhm 19784  normcnm 23183  NrmGrpcngp 23184  NrmModcnlm 23187   normOp cnmo 23311  ℂModcclm 23667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-subg 18268  df-ghm 18348  df-cmn 18900  df-mgp 19233  df-ring 19292  df-cring 19293  df-subrg 19526  df-lmod 19629  df-lmhm 19787  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nlm 23193  df-nmo 23314  df-nghm 23315  df-clm 23668
This theorem is referenced by:  nmoleub2a  23722  nmoleub2b  23723
  Copyright terms: Public domain W3C validator