MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem2 Structured version   Visualization version   GIF version

Theorem nmoleub2lem2 25163
Description: Lemma for nmoleub2a 25164 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
nmoleub2lem2.6 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
nmoleub2lem2.7 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
Assertion
Ref Expression
nmoleub2lem2 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)   𝑂(𝑥)

Proof of Theorem nmoleub2lem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 lmghm 21048 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
13 eqid 2735 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
14 eqid 2735 . . . . . . . . . 10 (0g𝑇) = (0g𝑇)
1513, 14ghmid 19253 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
169, 12, 153syl 18 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝑆)) = (0g𝑇))
1716fveq2d 6911 . . . . . . 7 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
188elin1d 4214 . . . . . . . 8 (𝜑𝑇 ∈ NrmMod)
19 nlmngp 24714 . . . . . . . 8 (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp)
204, 14nm0 24658 . . . . . . . 8 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
2118, 19, 203syl 18 . . . . . . 7 (𝜑 → (𝑀‘(0g𝑇)) = 0)
2217, 21eqtrd 2775 . . . . . 6 (𝜑 → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2322adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
2423oveq1d 7446 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = (0 / 𝑅))
2511adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℝ+)
2625rpcnd 13077 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℂ)
2725rpne0d 13080 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ≠ 0)
2826, 27div0d 12040 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0 / 𝑅) = 0)
2924, 28eqtrd 2775 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) = 0)
307elin1d 4214 . . . . . . 7 (𝜑𝑆 ∈ NrmMod)
31 nlmngp 24714 . . . . . . 7 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
323, 13nm0 24658 . . . . . . 7 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
3330, 31, 323syl 18 . . . . . 6 (𝜑 → (𝐿‘(0g𝑆)) = 0)
3433adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) = 0)
3525rpgt0d 13078 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 < 𝑅)
3634, 35eqbrtrd 5170 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g𝑆)) < 𝑅)
37 fveq2 6907 . . . . . . 7 (𝑥 = (0g𝑆) → (𝐿𝑥) = (𝐿‘(0g𝑆)))
3837breq1d 5158 . . . . . 6 (𝑥 = (0g𝑆) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(0g𝑆)) < 𝑅))
39 2fveq3 6912 . . . . . . . 8 (𝑥 = (0g𝑆) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(0g𝑆))))
4039oveq1d 7446 . . . . . . 7 (𝑥 = (0g𝑆) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅))
4140breq1d 5158 . . . . . 6 (𝑥 = (0g𝑆) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
4238, 41imbi12d 344 . . . . 5 (𝑥 = (0g𝑆) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)))
4330, 31syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ NrmGrp)
442, 3nmcl 24645 . . . . . . . . . 10 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4543, 44sylan 580 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝐿𝑥) ∈ ℝ)
4611adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ+)
4746rpred 13075 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑅 ∈ ℝ)
48 nmoleub2lem2.7 . . . . . . . . 9 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
4945, 47, 48syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))
5049imim1d 82 . . . . . . 7 ((𝜑𝑥𝑉) → (((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5150ralimdva 3165 . . . . . 6 (𝜑 → (∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
5251imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
53 ngpgrp 24628 . . . . . . 7 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
542, 13grpidcl 18996 . . . . . . 7 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝑉)
5543, 53, 543syl 18 . . . . . 6 (𝜑 → (0g𝑆) ∈ 𝑉)
5655adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → (0g𝑆) ∈ 𝑉)
5742, 52, 56rspcdva 3623 . . . 4 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝐿‘(0g𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴))
5836, 57mpd 15 . . 3 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g𝑆))) / 𝑅) ≤ 𝐴)
5929, 58eqbrtrrd 5172 . 2 ((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)
60 simp-4l 783 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝜑)
6160, 7syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑆 ∈ (NrmMod ∩ ℂMod))
6260, 8syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑇 ∈ (NrmMod ∩ ℂMod))
6360, 9syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
6460, 10syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ*)
6560, 11syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑅 ∈ ℝ+)
66 nmoleub2a.5 . . . . 5 (𝜑 → ℚ ⊆ 𝐾)
6760, 66syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ℚ ⊆ 𝐾)
68 eqid 2735 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
69 simpllr 776 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝐴 ∈ ℝ)
7059ad3antrrr 730 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 0 ≤ 𝐴)
71 simplrl 777 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦𝑉)
72 simplrr 778 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → 𝑦 ≠ (0g𝑆))
7352ad3antrrr 730 . . . . 5 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴))
74 fveq2 6907 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝐿𝑥) = (𝐿‘(𝑧( ·𝑠𝑆)𝑦)))
7574breq1d 5158 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝐿𝑥) < 𝑅 ↔ (𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅))
76 2fveq3 6912 . . . . . . . . 9 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))))
7776oveq1d 7446 . . . . . . . 8 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → ((𝑀‘(𝐹𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅))
7877breq1d 5158 . . . . . . 7 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴))
7975, 78imbi12d 344 . . . . . 6 (𝑥 = (𝑧( ·𝑠𝑆)𝑦) → (((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8079rspccv 3619 . . . . 5 (∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
8173, 80syl 17 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ((𝑧( ·𝑠𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠𝑆)𝑦))) / 𝑅) ≤ 𝐴)))
82 simpr 484 . . . 4 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) → ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
831, 2, 3, 4, 5, 6, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 81, 82nmoleub2lem3 25162 . . 3 ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
84 iman 401 . . 3 (((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))) ↔ ¬ ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) ∧ ¬ (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦))))
8583, 84mpbir 231 . 2 ((((𝜑 ∧ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))
86 nmoleub2lem2.6 . . 3 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
8745, 47, 86syl2anc 584 . 2 ((𝜑𝑥𝑉) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))
881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 59, 85, 87nmoleub2lem 25161 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  cin 3962  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153   · cmul 11158  *cxr 11292   < clt 11293  cle 11294   / cdiv 11918  cq 12988  +crp 13032  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  Grpcgrp 18964   GrpHom cghm 19243   LMHom clmhm 21036  normcnm 24605  NrmGrpcngp 24606  NrmModcnlm 24609   normOp cnmo 24742  ℂModcclm 25109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-topgen 17490  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-subg 19154  df-ghm 19244  df-cmn 19815  df-mgp 20153  df-ring 20253  df-cring 20254  df-subrg 20587  df-lmod 20877  df-lmhm 21039  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-xms 24346  df-ms 24347  df-nm 24611  df-ngp 24612  df-nlm 24615  df-nmo 24745  df-nghm 24746  df-clm 25110
This theorem is referenced by:  nmoleub2a  25164  nmoleub2b  25165
  Copyright terms: Public domain W3C validator