| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmpropd | Structured version Visualization version GIF version | ||
| Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| nmpropd.2 | ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) |
| nmpropd.3 | ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) |
| Ref | Expression |
|---|---|
| nmpropd | ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 2 | nmpropd.3 | . . . 4 ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) | |
| 3 | eqidd 2731 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
| 4 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
| 5 | nmpropd.2 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) | |
| 6 | 5 | oveqdr 7418 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | 4, 1, 6 | grpidpropd 18596 | . . . 4 ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
| 8 | 2, 3, 7 | oveq123d 7411 | . . 3 ⊢ (𝜑 → (𝑥(dist‘𝐾)(0g‘𝐾)) = (𝑥(dist‘𝐿)(0g‘𝐿))) |
| 9 | 1, 8 | mpteq12dv 5197 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿)))) |
| 10 | eqid 2730 | . . 3 ⊢ (norm‘𝐾) = (norm‘𝐾) | |
| 11 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 12 | eqid 2730 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
| 13 | eqid 2730 | . . 3 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
| 14 | 10, 11, 12, 13 | nmfval 24483 | . 2 ⊢ (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) |
| 15 | eqid 2730 | . . 3 ⊢ (norm‘𝐿) = (norm‘𝐿) | |
| 16 | eqid 2730 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 17 | eqid 2730 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 18 | eqid 2730 | . . 3 ⊢ (dist‘𝐿) = (dist‘𝐿) | |
| 19 | 15, 16, 17, 18 | nmfval 24483 | . 2 ⊢ (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿))) |
| 20 | 9, 14, 19 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 distcds 17236 0gc0g 17409 normcnm 24471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-0g 17411 df-nm 24477 |
| This theorem is referenced by: sranlm 24579 rlmnm 24584 zlmnm 33961 |
| Copyright terms: Public domain | W3C validator |