MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd Structured version   Visualization version   GIF version

Theorem nmpropd 24480
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
nmpropd.2 (𝜑 → (+g𝐾) = (+g𝐿))
nmpropd.3 (𝜑 → (dist‘𝐾) = (dist‘𝐿))
Assertion
Ref Expression
nmpropd (𝜑 → (norm‘𝐾) = (norm‘𝐿))

Proof of Theorem nmpropd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
2 nmpropd.3 . . . 4 (𝜑 → (dist‘𝐾) = (dist‘𝐿))
3 eqidd 2730 . . . 4 (𝜑𝑥 = 𝑥)
4 eqidd 2730 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐾))
5 nmpropd.2 . . . . . 6 (𝜑 → (+g𝐾) = (+g𝐿))
65oveqdr 7377 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
74, 1, 6grpidpropd 18536 . . . 4 (𝜑 → (0g𝐾) = (0g𝐿))
82, 3, 7oveq123d 7370 . . 3 (𝜑 → (𝑥(dist‘𝐾)(0g𝐾)) = (𝑥(dist‘𝐿)(0g𝐿)))
91, 8mpteq12dv 5179 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g𝐿))))
10 eqid 2729 . . 3 (norm‘𝐾) = (norm‘𝐾)
11 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2729 . . 3 (0g𝐾) = (0g𝐾)
13 eqid 2729 . . 3 (dist‘𝐾) = (dist‘𝐾)
1410, 11, 12, 13nmfval 24474 . 2 (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g𝐾)))
15 eqid 2729 . . 3 (norm‘𝐿) = (norm‘𝐿)
16 eqid 2729 . . 3 (Base‘𝐿) = (Base‘𝐿)
17 eqid 2729 . . 3 (0g𝐿) = (0g𝐿)
18 eqid 2729 . . 3 (dist‘𝐿) = (dist‘𝐿)
1915, 16, 17, 18nmfval 24474 . 2 (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g𝐿)))
209, 14, 193eqtr4g 2789 1 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5173  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  distcds 17170  0gc0g 17343  normcnm 24462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-0g 17345  df-nm 24468
This theorem is referenced by:  sranlm  24570  rlmnm  24575  zlmnm  33931
  Copyright terms: Public domain W3C validator