MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd Structured version   Visualization version   GIF version

Theorem nmpropd 23446
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
nmpropd.2 (𝜑 → (+g𝐾) = (+g𝐿))
nmpropd.3 (𝜑 → (dist‘𝐾) = (dist‘𝐿))
Assertion
Ref Expression
nmpropd (𝜑 → (norm‘𝐾) = (norm‘𝐿))

Proof of Theorem nmpropd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
2 nmpropd.3 . . . 4 (𝜑 → (dist‘𝐾) = (dist‘𝐿))
3 eqidd 2737 . . . 4 (𝜑𝑥 = 𝑥)
4 eqidd 2737 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐾))
5 nmpropd.2 . . . . . 6 (𝜑 → (+g𝐾) = (+g𝐿))
65oveqdr 7219 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
74, 1, 6grpidpropd 18088 . . . 4 (𝜑 → (0g𝐾) = (0g𝐿))
82, 3, 7oveq123d 7212 . . 3 (𝜑 → (𝑥(dist‘𝐾)(0g𝐾)) = (𝑥(dist‘𝐿)(0g𝐿)))
91, 8mpteq12dv 5125 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g𝐿))))
10 eqid 2736 . . 3 (norm‘𝐾) = (norm‘𝐾)
11 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2736 . . 3 (0g𝐾) = (0g𝐾)
13 eqid 2736 . . 3 (dist‘𝐾) = (dist‘𝐾)
1410, 11, 12, 13nmfval 23440 . 2 (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g𝐾)))
15 eqid 2736 . . 3 (norm‘𝐿) = (norm‘𝐿)
16 eqid 2736 . . 3 (Base‘𝐿) = (Base‘𝐿)
17 eqid 2736 . . 3 (0g𝐿) = (0g𝐿)
18 eqid 2736 . . 3 (dist‘𝐿) = (dist‘𝐿)
1915, 16, 17, 18nmfval 23440 . 2 (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g𝐿)))
209, 14, 193eqtr4g 2796 1 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cmpt 5120  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  distcds 16758  0gc0g 16898  normcnm 23428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7194  df-0g 16900  df-nm 23434
This theorem is referenced by:  sranlm  23536  rlmnm  23541  zlmnm  31582
  Copyright terms: Public domain W3C validator