Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmpropd | Structured version Visualization version GIF version |
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
nmpropd.2 | ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) |
nmpropd.3 | ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) |
Ref | Expression |
---|---|
nmpropd | ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
2 | nmpropd.3 | . . . 4 ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) | |
3 | eqidd 2739 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
4 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
5 | nmpropd.2 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) | |
6 | 5 | oveqdr 7283 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | 4, 1, 6 | grpidpropd 18261 | . . . 4 ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
8 | 2, 3, 7 | oveq123d 7276 | . . 3 ⊢ (𝜑 → (𝑥(dist‘𝐾)(0g‘𝐾)) = (𝑥(dist‘𝐿)(0g‘𝐿))) |
9 | 1, 8 | mpteq12dv 5161 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿)))) |
10 | eqid 2738 | . . 3 ⊢ (norm‘𝐾) = (norm‘𝐾) | |
11 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
12 | eqid 2738 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
13 | eqid 2738 | . . 3 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
14 | 10, 11, 12, 13 | nmfval 23650 | . 2 ⊢ (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) |
15 | eqid 2738 | . . 3 ⊢ (norm‘𝐿) = (norm‘𝐿) | |
16 | eqid 2738 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
17 | eqid 2738 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
18 | eqid 2738 | . . 3 ⊢ (dist‘𝐿) = (dist‘𝐿) | |
19 | 15, 16, 17, 18 | nmfval 23650 | . 2 ⊢ (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿))) |
20 | 9, 14, 19 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 distcds 16897 0gc0g 17067 normcnm 23638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-0g 17069 df-nm 23644 |
This theorem is referenced by: sranlm 23754 rlmnm 23759 zlmnm 31816 |
Copyright terms: Public domain | W3C validator |