![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmpropd | Structured version Visualization version GIF version |
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
nmpropd.2 | ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) |
nmpropd.3 | ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) |
Ref | Expression |
---|---|
nmpropd | ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
2 | nmpropd.3 | . . . 4 ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) | |
3 | eqidd 2778 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
4 | eqidd 2778 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
5 | nmpropd.2 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) | |
6 | 5 | oveqdr 6950 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | 4, 1, 6 | grpidpropd 17647 | . . . 4 ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
8 | 2, 3, 7 | oveq123d 6943 | . . 3 ⊢ (𝜑 → (𝑥(dist‘𝐾)(0g‘𝐾)) = (𝑥(dist‘𝐿)(0g‘𝐿))) |
9 | 1, 8 | mpteq12dv 4969 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿)))) |
10 | eqid 2777 | . . 3 ⊢ (norm‘𝐾) = (norm‘𝐾) | |
11 | eqid 2777 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
12 | eqid 2777 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
13 | eqid 2777 | . . 3 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
14 | 10, 11, 12, 13 | nmfval 22801 | . 2 ⊢ (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) |
15 | eqid 2777 | . . 3 ⊢ (norm‘𝐿) = (norm‘𝐿) | |
16 | eqid 2777 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
17 | eqid 2777 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
18 | eqid 2777 | . . 3 ⊢ (dist‘𝐿) = (dist‘𝐿) | |
19 | 15, 16, 17, 18 | nmfval 22801 | . 2 ⊢ (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿))) |
20 | 9, 14, 19 | 3eqtr4g 2838 | 1 ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 distcds 16347 0gc0g 16486 normcnm 22789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-0g 16488 df-nm 22795 |
This theorem is referenced by: sranlm 22896 rlmnm 22901 zlmnm 30608 |
Copyright terms: Public domain | W3C validator |