Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmpropd | Structured version Visualization version GIF version |
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
nmpropd.2 | ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) |
nmpropd.3 | ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) |
Ref | Expression |
---|---|
nmpropd | ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
2 | nmpropd.3 | . . . 4 ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) | |
3 | eqidd 2739 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
4 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
5 | nmpropd.2 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) | |
6 | 5 | oveqdr 7303 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | 4, 1, 6 | grpidpropd 18346 | . . . 4 ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
8 | 2, 3, 7 | oveq123d 7296 | . . 3 ⊢ (𝜑 → (𝑥(dist‘𝐾)(0g‘𝐾)) = (𝑥(dist‘𝐿)(0g‘𝐿))) |
9 | 1, 8 | mpteq12dv 5165 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿)))) |
10 | eqid 2738 | . . 3 ⊢ (norm‘𝐾) = (norm‘𝐾) | |
11 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
12 | eqid 2738 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
13 | eqid 2738 | . . 3 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
14 | 10, 11, 12, 13 | nmfval 23744 | . 2 ⊢ (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) |
15 | eqid 2738 | . . 3 ⊢ (norm‘𝐿) = (norm‘𝐿) | |
16 | eqid 2738 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
17 | eqid 2738 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
18 | eqid 2738 | . . 3 ⊢ (dist‘𝐿) = (dist‘𝐿) | |
19 | 15, 16, 17, 18 | nmfval 23744 | . 2 ⊢ (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿))) |
20 | 9, 14, 19 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 distcds 16971 0gc0g 17150 normcnm 23732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-0g 17152 df-nm 23738 |
This theorem is referenced by: sranlm 23848 rlmnm 23853 zlmnm 31916 |
Copyright terms: Public domain | W3C validator |