| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmpropd | Structured version Visualization version GIF version | ||
| Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| nmpropd.2 | ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) |
| nmpropd.3 | ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) |
| Ref | Expression |
|---|---|
| nmpropd | ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 2 | nmpropd.3 | . . . 4 ⊢ (𝜑 → (dist‘𝐾) = (dist‘𝐿)) | |
| 3 | eqidd 2730 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
| 4 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
| 5 | nmpropd.2 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) | |
| 6 | 5 | oveqdr 7377 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | 4, 1, 6 | grpidpropd 18536 | . . . 4 ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
| 8 | 2, 3, 7 | oveq123d 7370 | . . 3 ⊢ (𝜑 → (𝑥(dist‘𝐾)(0g‘𝐾)) = (𝑥(dist‘𝐿)(0g‘𝐿))) |
| 9 | 1, 8 | mpteq12dv 5179 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿)))) |
| 10 | eqid 2729 | . . 3 ⊢ (norm‘𝐾) = (norm‘𝐾) | |
| 11 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 12 | eqid 2729 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
| 13 | eqid 2729 | . . 3 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
| 14 | 10, 11, 12, 13 | nmfval 24474 | . 2 ⊢ (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g‘𝐾))) |
| 15 | eqid 2729 | . . 3 ⊢ (norm‘𝐿) = (norm‘𝐿) | |
| 16 | eqid 2729 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 17 | eqid 2729 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 18 | eqid 2729 | . . 3 ⊢ (dist‘𝐿) = (dist‘𝐿) | |
| 19 | 15, 16, 17, 18 | nmfval 24474 | . 2 ⊢ (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g‘𝐿))) |
| 20 | 9, 14, 19 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 distcds 17170 0gc0g 17343 normcnm 24462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-0g 17345 df-nm 24468 |
| This theorem is referenced by: sranlm 24570 rlmnm 24575 zlmnm 33931 |
| Copyright terms: Public domain | W3C validator |