MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd Structured version   Visualization version   GIF version

Theorem nmpropd 24489
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
nmpropd.2 (𝜑 → (+g𝐾) = (+g𝐿))
nmpropd.3 (𝜑 → (dist‘𝐾) = (dist‘𝐿))
Assertion
Ref Expression
nmpropd (𝜑 → (norm‘𝐾) = (norm‘𝐿))

Proof of Theorem nmpropd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
2 nmpropd.3 . . . 4 (𝜑 → (dist‘𝐾) = (dist‘𝐿))
3 eqidd 2731 . . . 4 (𝜑𝑥 = 𝑥)
4 eqidd 2731 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐾))
5 nmpropd.2 . . . . . 6 (𝜑 → (+g𝐾) = (+g𝐿))
65oveqdr 7418 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
74, 1, 6grpidpropd 18596 . . . 4 (𝜑 → (0g𝐾) = (0g𝐿))
82, 3, 7oveq123d 7411 . . 3 (𝜑 → (𝑥(dist‘𝐾)(0g𝐾)) = (𝑥(dist‘𝐿)(0g𝐿)))
91, 8mpteq12dv 5197 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g𝐾))) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g𝐿))))
10 eqid 2730 . . 3 (norm‘𝐾) = (norm‘𝐾)
11 eqid 2730 . . 3 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2730 . . 3 (0g𝐾) = (0g𝐾)
13 eqid 2730 . . 3 (dist‘𝐾) = (dist‘𝐾)
1410, 11, 12, 13nmfval 24483 . 2 (norm‘𝐾) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑥(dist‘𝐾)(0g𝐾)))
15 eqid 2730 . . 3 (norm‘𝐿) = (norm‘𝐿)
16 eqid 2730 . . 3 (Base‘𝐿) = (Base‘𝐿)
17 eqid 2730 . . 3 (0g𝐿) = (0g𝐿)
18 eqid 2730 . . 3 (dist‘𝐿) = (dist‘𝐿)
1915, 16, 17, 18nmfval 24483 . 2 (norm‘𝐿) = (𝑥 ∈ (Base‘𝐿) ↦ (𝑥(dist‘𝐿)(0g𝐿)))
209, 14, 193eqtr4g 2790 1 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  distcds 17236  0gc0g 17409  normcnm 24471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-0g 17411  df-nm 24477
This theorem is referenced by:  sranlm  24579  rlmnm  24584  zlmnm  33961
  Copyright terms: Public domain W3C validator