![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmpropd | Structured version Visualization version GIF version |
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmpropd.1 | โข (๐ โ (Baseโ๐พ) = (Baseโ๐ฟ)) |
nmpropd.2 | โข (๐ โ (+gโ๐พ) = (+gโ๐ฟ)) |
nmpropd.3 | โข (๐ โ (distโ๐พ) = (distโ๐ฟ)) |
Ref | Expression |
---|---|
nmpropd | โข (๐ โ (normโ๐พ) = (normโ๐ฟ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmpropd.1 | . . 3 โข (๐ โ (Baseโ๐พ) = (Baseโ๐ฟ)) | |
2 | nmpropd.3 | . . . 4 โข (๐ โ (distโ๐พ) = (distโ๐ฟ)) | |
3 | eqidd 2733 | . . . 4 โข (๐ โ ๐ฅ = ๐ฅ) | |
4 | eqidd 2733 | . . . . 5 โข (๐ โ (Baseโ๐พ) = (Baseโ๐พ)) | |
5 | nmpropd.2 | . . . . . 6 โข (๐ โ (+gโ๐พ) = (+gโ๐ฟ)) | |
6 | 5 | oveqdr 7436 | . . . . 5 โข ((๐ โง (๐ฅ โ (Baseโ๐พ) โง ๐ฆ โ (Baseโ๐พ))) โ (๐ฅ(+gโ๐พ)๐ฆ) = (๐ฅ(+gโ๐ฟ)๐ฆ)) |
7 | 4, 1, 6 | grpidpropd 18580 | . . . 4 โข (๐ โ (0gโ๐พ) = (0gโ๐ฟ)) |
8 | 2, 3, 7 | oveq123d 7429 | . . 3 โข (๐ โ (๐ฅ(distโ๐พ)(0gโ๐พ)) = (๐ฅ(distโ๐ฟ)(0gโ๐ฟ))) |
9 | 1, 8 | mpteq12dv 5239 | . 2 โข (๐ โ (๐ฅ โ (Baseโ๐พ) โฆ (๐ฅ(distโ๐พ)(0gโ๐พ))) = (๐ฅ โ (Baseโ๐ฟ) โฆ (๐ฅ(distโ๐ฟ)(0gโ๐ฟ)))) |
10 | eqid 2732 | . . 3 โข (normโ๐พ) = (normโ๐พ) | |
11 | eqid 2732 | . . 3 โข (Baseโ๐พ) = (Baseโ๐พ) | |
12 | eqid 2732 | . . 3 โข (0gโ๐พ) = (0gโ๐พ) | |
13 | eqid 2732 | . . 3 โข (distโ๐พ) = (distโ๐พ) | |
14 | 10, 11, 12, 13 | nmfval 24096 | . 2 โข (normโ๐พ) = (๐ฅ โ (Baseโ๐พ) โฆ (๐ฅ(distโ๐พ)(0gโ๐พ))) |
15 | eqid 2732 | . . 3 โข (normโ๐ฟ) = (normโ๐ฟ) | |
16 | eqid 2732 | . . 3 โข (Baseโ๐ฟ) = (Baseโ๐ฟ) | |
17 | eqid 2732 | . . 3 โข (0gโ๐ฟ) = (0gโ๐ฟ) | |
18 | eqid 2732 | . . 3 โข (distโ๐ฟ) = (distโ๐ฟ) | |
19 | 15, 16, 17, 18 | nmfval 24096 | . 2 โข (normโ๐ฟ) = (๐ฅ โ (Baseโ๐ฟ) โฆ (๐ฅ(distโ๐ฟ)(0gโ๐ฟ))) |
20 | 9, 14, 19 | 3eqtr4g 2797 | 1 โข (๐ โ (normโ๐พ) = (normโ๐ฟ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 โฆ cmpt 5231 โcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 distcds 17205 0gc0g 17384 normcnm 24084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-0g 17386 df-nm 24090 |
This theorem is referenced by: sranlm 24200 rlmnm 24205 zlmnm 32941 |
Copyright terms: Public domain | W3C validator |