MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd Structured version   Visualization version   GIF version

Theorem nmpropd 24102
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd.1 (๐œ‘ โ†’ (Baseโ€˜๐พ) = (Baseโ€˜๐ฟ))
nmpropd.2 (๐œ‘ โ†’ (+gโ€˜๐พ) = (+gโ€˜๐ฟ))
nmpropd.3 (๐œ‘ โ†’ (distโ€˜๐พ) = (distโ€˜๐ฟ))
Assertion
Ref Expression
nmpropd (๐œ‘ โ†’ (normโ€˜๐พ) = (normโ€˜๐ฟ))

Proof of Theorem nmpropd
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmpropd.1 . . 3 (๐œ‘ โ†’ (Baseโ€˜๐พ) = (Baseโ€˜๐ฟ))
2 nmpropd.3 . . . 4 (๐œ‘ โ†’ (distโ€˜๐พ) = (distโ€˜๐ฟ))
3 eqidd 2733 . . . 4 (๐œ‘ โ†’ ๐‘ฅ = ๐‘ฅ)
4 eqidd 2733 . . . . 5 (๐œ‘ โ†’ (Baseโ€˜๐พ) = (Baseโ€˜๐พ))
5 nmpropd.2 . . . . . 6 (๐œ‘ โ†’ (+gโ€˜๐พ) = (+gโ€˜๐ฟ))
65oveqdr 7436 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ โˆˆ (Baseโ€˜๐พ) โˆง ๐‘ฆ โˆˆ (Baseโ€˜๐พ))) โ†’ (๐‘ฅ(+gโ€˜๐พ)๐‘ฆ) = (๐‘ฅ(+gโ€˜๐ฟ)๐‘ฆ))
74, 1, 6grpidpropd 18580 . . . 4 (๐œ‘ โ†’ (0gโ€˜๐พ) = (0gโ€˜๐ฟ))
82, 3, 7oveq123d 7429 . . 3 (๐œ‘ โ†’ (๐‘ฅ(distโ€˜๐พ)(0gโ€˜๐พ)) = (๐‘ฅ(distโ€˜๐ฟ)(0gโ€˜๐ฟ)))
91, 8mpteq12dv 5239 . 2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (Baseโ€˜๐พ) โ†ฆ (๐‘ฅ(distโ€˜๐พ)(0gโ€˜๐พ))) = (๐‘ฅ โˆˆ (Baseโ€˜๐ฟ) โ†ฆ (๐‘ฅ(distโ€˜๐ฟ)(0gโ€˜๐ฟ))))
10 eqid 2732 . . 3 (normโ€˜๐พ) = (normโ€˜๐พ)
11 eqid 2732 . . 3 (Baseโ€˜๐พ) = (Baseโ€˜๐พ)
12 eqid 2732 . . 3 (0gโ€˜๐พ) = (0gโ€˜๐พ)
13 eqid 2732 . . 3 (distโ€˜๐พ) = (distโ€˜๐พ)
1410, 11, 12, 13nmfval 24096 . 2 (normโ€˜๐พ) = (๐‘ฅ โˆˆ (Baseโ€˜๐พ) โ†ฆ (๐‘ฅ(distโ€˜๐พ)(0gโ€˜๐พ)))
15 eqid 2732 . . 3 (normโ€˜๐ฟ) = (normโ€˜๐ฟ)
16 eqid 2732 . . 3 (Baseโ€˜๐ฟ) = (Baseโ€˜๐ฟ)
17 eqid 2732 . . 3 (0gโ€˜๐ฟ) = (0gโ€˜๐ฟ)
18 eqid 2732 . . 3 (distโ€˜๐ฟ) = (distโ€˜๐ฟ)
1915, 16, 17, 18nmfval 24096 . 2 (normโ€˜๐ฟ) = (๐‘ฅ โˆˆ (Baseโ€˜๐ฟ) โ†ฆ (๐‘ฅ(distโ€˜๐ฟ)(0gโ€˜๐ฟ)))
209, 14, 193eqtr4g 2797 1 (๐œ‘ โ†’ (normโ€˜๐พ) = (normโ€˜๐ฟ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106   โ†ฆ cmpt 5231  โ€˜cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  distcds 17205  0gc0g 17384  normcnm 24084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-0g 17386  df-nm 24090
This theorem is referenced by:  sranlm  24200  rlmnm  24205  zlmnm  32941
  Copyright terms: Public domain W3C validator