![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmf2 | Structured version Visualization version GIF version |
Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmf2.n | ⊢ 𝑁 = (norm‘𝑊) |
nmf2.x | ⊢ 𝑋 = (Base‘𝑊) |
nmf2.d | ⊢ 𝐷 = (dist‘𝑊) |
nmf2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmf2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf2.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
2 | nmf2.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
3 | eqid 2735 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
4 | nmf2.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
5 | nmf2.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
6 | 1, 2, 3, 4, 5 | nmfval2 24620 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
8 | 2, 3 | grpidcl 18996 | . . . 4 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑋) |
9 | metcl 24358 | . . . . 5 ⊢ ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (0g‘𝑊) ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) | |
10 | 9 | 3comr 1124 | . . . 4 ⊢ (((0g‘𝑊) ∈ 𝑋 ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
11 | 8, 10 | syl3an1 1162 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
12 | 11 | 3expa 1117 | . 2 ⊢ (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
13 | 7, 12 | fmpt3d 7136 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 × cxp 5687 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 Basecbs 17245 distcds 17307 0gc0g 17486 Grpcgrp 18964 Metcmet 21368 normcnm 24605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-met 21376 df-nm 24611 |
This theorem is referenced by: isngp2 24626 isngp3 24627 nmf 24644 |
Copyright terms: Public domain | W3C validator |