![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmf2 | Structured version Visualization version GIF version |
Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmf2.n | ⊢ 𝑁 = (norm‘𝑊) |
nmf2.x | ⊢ 𝑋 = (Base‘𝑊) |
nmf2.d | ⊢ 𝐷 = (dist‘𝑊) |
nmf2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmf2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf2.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
2 | nmf2.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
3 | eqid 2740 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
4 | nmf2.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
5 | nmf2.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
6 | 1, 2, 3, 4, 5 | nmfval2 24625 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
8 | 2, 3 | grpidcl 19005 | . . . 4 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑋) |
9 | metcl 24363 | . . . . 5 ⊢ ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (0g‘𝑊) ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) | |
10 | 9 | 3comr 1125 | . . . 4 ⊢ (((0g‘𝑊) ∈ 𝑋 ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
11 | 8, 10 | syl3an1 1163 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
12 | 11 | 3expa 1118 | . 2 ⊢ (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
13 | 7, 12 | fmpt3d 7150 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 × cxp 5698 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 Basecbs 17258 distcds 17320 0gc0g 17499 Grpcgrp 18973 Metcmet 21373 normcnm 24610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-met 21381 df-nm 24616 |
This theorem is referenced by: isngp2 24631 isngp3 24632 nmf 24649 |
Copyright terms: Public domain | W3C validator |