| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmf2 | Structured version Visualization version GIF version | ||
| Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmf2.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmf2.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmf2.d | ⊢ 𝐷 = (dist‘𝑊) |
| nmf2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| nmf2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf2.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
| 2 | nmf2.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 4 | nmf2.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
| 5 | nmf2.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 6 | 1, 2, 3, 4, 5 | nmfval2 24479 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
| 8 | 2, 3 | grpidcl 18897 | . . . 4 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑋) |
| 9 | metcl 24220 | . . . . 5 ⊢ ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (0g‘𝑊) ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) | |
| 10 | 9 | 3comr 1125 | . . . 4 ⊢ (((0g‘𝑊) ∈ 𝑋 ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
| 11 | 8, 10 | syl3an1 1163 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
| 12 | 11 | 3expa 1118 | . 2 ⊢ (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
| 13 | 7, 12 | fmpt3d 7088 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 × cxp 5636 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 Basecbs 17179 distcds 17229 0gc0g 17402 Grpcgrp 18865 Metcmet 21250 normcnm 24464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-met 21258 df-nm 24470 |
| This theorem is referenced by: isngp2 24485 isngp3 24486 nmf 24503 |
| Copyright terms: Public domain | W3C validator |