| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmf2 | Structured version Visualization version GIF version | ||
| Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmf2.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmf2.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmf2.d | ⊢ 𝐷 = (dist‘𝑊) |
| nmf2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| nmf2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf2.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
| 2 | nmf2.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 4 | nmf2.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
| 5 | nmf2.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 6 | 1, 2, 3, 4, 5 | nmfval2 24506 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸(0g‘𝑊)))) |
| 8 | 2, 3 | grpidcl 18878 | . . . 4 ⊢ (𝑊 ∈ Grp → (0g‘𝑊) ∈ 𝑋) |
| 9 | metcl 24247 | . . . . 5 ⊢ ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (0g‘𝑊) ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) | |
| 10 | 9 | 3comr 1125 | . . . 4 ⊢ (((0g‘𝑊) ∈ 𝑋 ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
| 11 | 8, 10 | syl3an1 1163 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
| 12 | 11 | 3expa 1118 | . 2 ⊢ (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐸(0g‘𝑊)) ∈ ℝ) |
| 13 | 7, 12 | fmpt3d 7049 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 × cxp 5612 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 Basecbs 17120 distcds 17170 0gc0g 17343 Grpcgrp 18846 Metcmet 21277 normcnm 24491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-met 21285 df-nm 24497 |
| This theorem is referenced by: isngp2 24512 isngp3 24513 nmf 24530 |
| Copyright terms: Public domain | W3C validator |