Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmf2 Structured version   Visualization version   GIF version

Theorem nmf2 23199
 Description: The norm is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmf2.n 𝑁 = (norm‘𝑊)
nmf2.x 𝑋 = (Base‘𝑊)
nmf2.d 𝐷 = (dist‘𝑊)
nmf2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmf2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)

Proof of Theorem nmf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmf2.n . . . 4 𝑁 = (norm‘𝑊)
2 nmf2.x . . . 4 𝑋 = (Base‘𝑊)
3 eqid 2798 . . . 4 (0g𝑊) = (0g𝑊)
4 nmf2.d . . . 4 𝐷 = (dist‘𝑊)
5 nmf2.e . . . 4 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
61, 2, 3, 4, 5nmfval2 23197 . . 3 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
76adantr 484 . 2 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸(0g𝑊))))
82, 3grpidcl 18123 . . . 4 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝑋)
9 metcl 22939 . . . . 5 ((𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋 ∧ (0g𝑊) ∈ 𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
1093comr 1122 . . . 4 (((0g𝑊) ∈ 𝑋𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
118, 10syl3an1 1160 . . 3 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
12113expa 1115 . 2 (((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) ∧ 𝑥𝑋) → (𝑥𝐸(0g𝑊)) ∈ ℝ)
137, 12fmpt3d 6857 1 ((𝑊 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ↦ cmpt 5110   × cxp 5517   ↾ cres 5521  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℝcr 10525  Basecbs 16475  distcds 16566  0gc0g 16705  Grpcgrp 18095  Metcmet 20077  normcnm 23183 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-met 20085  df-nm 23189 This theorem is referenced by:  isngp2  23203  isngp3  23204  nmf  23221
 Copyright terms: Public domain W3C validator