MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmf2 Structured version   Visualization version   GIF version

Theorem nmf2 24101
Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmf2.n 𝑁 = (normβ€˜π‘Š)
nmf2.x 𝑋 = (Baseβ€˜π‘Š)
nmf2.d 𝐷 = (distβ€˜π‘Š)
nmf2.e 𝐸 = (𝐷 β†Ύ (𝑋 Γ— 𝑋))
Assertion
Ref Expression
nmf2 ((π‘Š ∈ Grp ∧ 𝐸 ∈ (Metβ€˜π‘‹)) β†’ 𝑁:π‘‹βŸΆβ„)

Proof of Theorem nmf2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 nmf2.n . . . 4 𝑁 = (normβ€˜π‘Š)
2 nmf2.x . . . 4 𝑋 = (Baseβ€˜π‘Š)
3 eqid 2732 . . . 4 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
4 nmf2.d . . . 4 𝐷 = (distβ€˜π‘Š)
5 nmf2.e . . . 4 𝐸 = (𝐷 β†Ύ (𝑋 Γ— 𝑋))
61, 2, 3, 4, 5nmfval2 24099 . . 3 (π‘Š ∈ Grp β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐸(0gβ€˜π‘Š))))
76adantr 481 . 2 ((π‘Š ∈ Grp ∧ 𝐸 ∈ (Metβ€˜π‘‹)) β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐸(0gβ€˜π‘Š))))
82, 3grpidcl 18849 . . . 4 (π‘Š ∈ Grp β†’ (0gβ€˜π‘Š) ∈ 𝑋)
9 metcl 23837 . . . . 5 ((𝐸 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ (0gβ€˜π‘Š) ∈ 𝑋) β†’ (π‘₯𝐸(0gβ€˜π‘Š)) ∈ ℝ)
1093comr 1125 . . . 4 (((0gβ€˜π‘Š) ∈ 𝑋 ∧ 𝐸 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯𝐸(0gβ€˜π‘Š)) ∈ ℝ)
118, 10syl3an1 1163 . . 3 ((π‘Š ∈ Grp ∧ 𝐸 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯𝐸(0gβ€˜π‘Š)) ∈ ℝ)
12113expa 1118 . 2 (((π‘Š ∈ Grp ∧ 𝐸 ∈ (Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯𝐸(0gβ€˜π‘Š)) ∈ ℝ)
137, 12fmpt3d 7115 1 ((π‘Š ∈ Grp ∧ 𝐸 ∈ (Metβ€˜π‘‹)) β†’ 𝑁:π‘‹βŸΆβ„)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   ↦ cmpt 5231   Γ— cxp 5674   β†Ύ cres 5678  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  β„cr 11108  Basecbs 17143  distcds 17205  0gc0g 17384  Grpcgrp 18818  Metcmet 20929  normcnm 24084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-met 20937  df-nm 24090
This theorem is referenced by:  isngp2  24105  isngp3  24106  nmf  24123
  Copyright terms: Public domain W3C validator