| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nregmodellem | Structured version Visualization version GIF version | ||
| Description: Lemma for nregmodel 45017. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| nregmodel.1 | ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) |
| nregmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| nregmodellem | ⊢ (𝑥𝑅∅ ↔ 𝑥 ∈ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nregmodel.1 | . . . 4 ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) | |
| 2 | 1 | nregmodelf1o 45015 | . . 3 ⊢ 𝐹:V–1-1-onto→V |
| 3 | nregmodel.2 | . . 3 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 4 | vex 3468 | . . 3 ⊢ 𝑥 ∈ V | |
| 5 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 6 | 2, 3, 4, 5 | brpermmodel 45003 | . 2 ⊢ (𝑥𝑅∅ ↔ 𝑥 ∈ (𝐹‘∅)) |
| 7 | f1ofun 6825 | . . . . 5 ⊢ (𝐹:V–1-1-onto→V → Fun 𝐹) | |
| 8 | 2, 7 | ax-mp 5 | . . . 4 ⊢ Fun 𝐹 |
| 9 | opex 5444 | . . . . . . 7 ⊢ 〈∅, {∅}〉 ∈ V | |
| 10 | 9 | prid1 4743 | . . . . . 6 ⊢ 〈∅, {∅}〉 ∈ {〈∅, {∅}〉, 〈{∅}, ∅〉} |
| 11 | elun2 4163 | . . . . . 6 ⊢ (〈∅, {∅}〉 ∈ {〈∅, {∅}〉, 〈{∅}, ∅〉} → 〈∅, {∅}〉 ∈ (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉})) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 〈∅, {∅}〉 ∈ (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) |
| 13 | 12, 1 | eleqtrri 2834 | . . . 4 ⊢ 〈∅, {∅}〉 ∈ 𝐹 |
| 14 | funopfv 6933 | . . . 4 ⊢ (Fun 𝐹 → (〈∅, {∅}〉 ∈ 𝐹 → (𝐹‘∅) = {∅})) | |
| 15 | 8, 13, 14 | mp2 9 | . . 3 ⊢ (𝐹‘∅) = {∅} |
| 16 | 15 | eleq2i 2827 | . 2 ⊢ (𝑥 ∈ (𝐹‘∅) ↔ 𝑥 ∈ {∅}) |
| 17 | 6, 16 | bitri 275 | 1 ⊢ (𝑥𝑅∅ ↔ 𝑥 ∈ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ∪ cun 3929 ∅c0 4313 {csn 4606 {cpr 4608 〈cop 4612 class class class wbr 5124 I cid 5552 E cep 5557 ◡ccnv 5658 ↾ cres 5661 ∘ ccom 5663 Fun wfun 6530 –1-1-onto→wf1o 6535 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-eprel 5558 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: nregmodel 45017 |
| Copyright terms: Public domain | W3C validator |