Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodellem Structured version   Visualization version   GIF version

Theorem nregmodellem 45016
Description: Lemma for nregmodel 45017. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodellem (𝑥𝑅∅ ↔ 𝑥 ∈ {∅})

Proof of Theorem nregmodellem
StepHypRef Expression
1 nregmodel.1 . . . 4 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
21nregmodelf1o 45015 . . 3 𝐹:V–1-1-onto→V
3 nregmodel.2 . . 3 𝑅 = (𝐹 ∘ E )
4 vex 3468 . . 3 𝑥 ∈ V
5 0ex 5282 . . 3 ∅ ∈ V
62, 3, 4, 5brpermmodel 45003 . 2 (𝑥𝑅∅ ↔ 𝑥 ∈ (𝐹‘∅))
7 f1ofun 6825 . . . . 5 (𝐹:V–1-1-onto→V → Fun 𝐹)
82, 7ax-mp 5 . . . 4 Fun 𝐹
9 opex 5444 . . . . . . 7 ⟨∅, {∅}⟩ ∈ V
109prid1 4743 . . . . . 6 ⟨∅, {∅}⟩ ∈ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩}
11 elun2 4163 . . . . . 6 (⟨∅, {∅}⟩ ∈ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩} → ⟨∅, {∅}⟩ ∈ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩}))
1210, 11ax-mp 5 . . . . 5 ⟨∅, {∅}⟩ ∈ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
1312, 1eleqtrri 2834 . . . 4 ⟨∅, {∅}⟩ ∈ 𝐹
14 funopfv 6933 . . . 4 (Fun 𝐹 → (⟨∅, {∅}⟩ ∈ 𝐹 → (𝐹‘∅) = {∅}))
158, 13, 14mp2 9 . . 3 (𝐹‘∅) = {∅}
1615eleq2i 2827 . 2 (𝑥 ∈ (𝐹‘∅) ↔ 𝑥 ∈ {∅})
176, 16bitri 275 1 (𝑥𝑅∅ ↔ 𝑥 ∈ {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  c0 4313  {csn 4606  {cpr 4608  cop 4612   class class class wbr 5124   I cid 5552   E cep 5557  ccnv 5658  cres 5661  ccom 5663  Fun wfun 6530  1-1-ontowf1o 6535  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  nregmodel  45017
  Copyright terms: Public domain W3C validator