| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omege0 | Structured version Visualization version GIF version | ||
| Description: If the outer measure of a set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| omege0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omege0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omege0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omege0 | ⊢ (𝜑 → 0 ≤ (𝑂‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11287 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 3 | pnfxr 11294 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 5 | omege0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 6 | omege0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 7 | omege0.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 8 | 5, 6, 7 | omecl 46499 | . 2 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| 9 | iccgelb 13424 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘𝐴)) | |
| 10 | 2, 4, 8, 9 | syl3anc 1373 | 1 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 0cc0 11134 +∞cpnf 11271 ℝ*cxr 11273 ≤ cle 11275 [,]cicc 13370 OutMeascome 46485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-rnegex 11205 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-pnf 11276 df-xr 11278 df-icc 13374 df-ome 46486 |
| This theorem is referenced by: omess0 46530 |
| Copyright terms: Public domain | W3C validator |