Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omege0 Structured version   Visualization version   GIF version

Theorem omege0 46538
Description: If the outer measure of a set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
omege0.o (𝜑𝑂 ∈ OutMeas)
omege0.x 𝑋 = dom 𝑂
omege0.a (𝜑𝐴𝑋)
Assertion
Ref Expression
omege0 (𝜑 → 0 ≤ (𝑂𝐴))

Proof of Theorem omege0
StepHypRef Expression
1 0xr 11228 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 11235 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 omege0.o . . 3 (𝜑𝑂 ∈ OutMeas)
6 omege0.x . . 3 𝑋 = dom 𝑂
7 omege0.a . . 3 (𝜑𝐴𝑋)
85, 6, 7omecl 46508 . 2 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
9 iccgelb 13370 . 2 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝑂𝐴))
102, 4, 8, 9syl3anc 1373 1 (𝜑 → 0 ≤ (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917   cuni 4874   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216  [,]cicc 13316  OutMeascome 46494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pnf 11217  df-xr 11219  df-icc 13320  df-ome 46495
This theorem is referenced by:  omess0  46539
  Copyright terms: Public domain W3C validator