MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1c Structured version   Visualization version   GIF version

Theorem rankr1c 9714
Description: A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1c (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))

Proof of Theorem rankr1c
StepHypRef Expression
1 id 22 . . . 4 (𝐵 = (rank‘𝐴) → 𝐵 = (rank‘𝐴))
2 rankdmr1 9694 . . . 4 (rank‘𝐴) ∈ dom 𝑅1
31, 2eqeltrdi 2839 . . 3 (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1)
43a1i 11 . 2 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1))
5 elfvdm 6856 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝐵) → suc 𝐵 ∈ dom 𝑅1)
6 r1funlim 9659 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 485 . . . . . 6 Lim dom 𝑅1
8 limsuc 7779 . . . . . 6 (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1))
97, 8ax-mp 5 . . . . 5 (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)
105, 9sylibr 234 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐵 ∈ dom 𝑅1)
1110adantl 481 . . 3 ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1)
1211a1i 11 . 2 (𝐴 (𝑅1 “ On) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1))
13 eqss 3945 . . . 4 (𝐵 = (rank‘𝐴) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵))
14 rankr1clem 9713 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ 𝐵 ⊆ (rank‘𝐴)))
15 rankr1ag 9695 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
169, 15sylan2b 594 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
17 rankon 9688 . . . . . . 7 (rank‘𝐴) ∈ On
18 limord 6367 . . . . . . . . . 10 (Lim dom 𝑅1 → Ord dom 𝑅1)
197, 18ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
20 ordelon 6330 . . . . . . . . 9 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
2119, 20mpan 690 . . . . . . . 8 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
2221adantl 481 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
23 onsssuc 6398 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2417, 22, 23sylancr 587 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2516, 24bitr4d 282 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
2614, 25anbi12d 632 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵)))
2713, 26bitr4id 290 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
2827ex 412 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ dom 𝑅1 → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))))
294, 12, 28pm5.21ndd 379 1 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897   cuni 4856  dom cdm 5614  cima 5617  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308  Fun wfun 6475  cfv 6481  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  rankidn  9715  rankpwi  9716  rankr1g  9725  r1tskina  10673
  Copyright terms: Public domain W3C validator