MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1c Structured version   Visualization version   GIF version

Theorem rankr1c 9859
Description: A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1c (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))

Proof of Theorem rankr1c
StepHypRef Expression
1 id 22 . . . 4 (𝐵 = (rank‘𝐴) → 𝐵 = (rank‘𝐴))
2 rankdmr1 9839 . . . 4 (rank‘𝐴) ∈ dom 𝑅1
31, 2eqeltrdi 2847 . . 3 (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1)
43a1i 11 . 2 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1))
5 elfvdm 6944 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝐵) → suc 𝐵 ∈ dom 𝑅1)
6 r1funlim 9804 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 485 . . . . . 6 Lim dom 𝑅1
8 limsuc 7870 . . . . . 6 (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1))
97, 8ax-mp 5 . . . . 5 (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)
105, 9sylibr 234 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐵 ∈ dom 𝑅1)
1110adantl 481 . . 3 ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1)
1211a1i 11 . 2 (𝐴 (𝑅1 “ On) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1))
13 eqss 4011 . . . 4 (𝐵 = (rank‘𝐴) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵))
14 rankr1clem 9858 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ 𝐵 ⊆ (rank‘𝐴)))
15 rankr1ag 9840 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
169, 15sylan2b 594 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
17 rankon 9833 . . . . . . 7 (rank‘𝐴) ∈ On
18 limord 6446 . . . . . . . . . 10 (Lim dom 𝑅1 → Ord dom 𝑅1)
197, 18ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
20 ordelon 6410 . . . . . . . . 9 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
2119, 20mpan 690 . . . . . . . 8 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
2221adantl 481 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
23 onsssuc 6476 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2417, 22, 23sylancr 587 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2516, 24bitr4d 282 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
2614, 25anbi12d 632 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵)))
2713, 26bitr4id 290 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
2827ex 412 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ dom 𝑅1 → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))))
294, 12, 28pm5.21ndd 379 1 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963   cuni 4912  dom cdm 5689  cima 5692  Ord word 6385  Oncon0 6386  Lim wlim 6387  suc csuc 6388  Fun wfun 6557  cfv 6563  𝑅1cr1 9800  rankcrnk 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  rankidn  9860  rankpwi  9861  rankr1g  9870  r1tskina  10820
  Copyright terms: Public domain W3C validator