![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1bg | Structured version Visualization version GIF version |
Description: A relationship between rank and 𝑅1. See rankr1ag 9803 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1bg | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 9767 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 485 | . . . 4 ⊢ Lim dom 𝑅1 |
3 | limsuc 7842 | . . . 4 ⊢ (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1) |
5 | rankr1ag 9803 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
6 | 4, 5 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) |
7 | r1sucg 9770 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
9 | 8 | eleq2d 2818 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ 𝐴 ∈ 𝒫 (𝑅1‘𝐵))) |
10 | fvex 6904 | . . . 4 ⊢ (𝑅1‘𝐵) ∈ V | |
11 | 10 | elpw2 5345 | . . 3 ⊢ (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵)) |
12 | 9, 11 | bitr2di 288 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
13 | rankon 9796 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
14 | limord 6424 | . . . . . 6 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
15 | 2, 14 | ax-mp 5 | . . . . 5 ⊢ Ord dom 𝑅1 |
16 | ordelon 6388 | . . . . 5 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) | |
17 | 15, 16 | mpan 687 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) |
19 | onsssuc 6454 | . . 3 ⊢ (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
20 | 13, 18, 19 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) |
21 | 6, 12, 20 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 dom cdm 5676 “ cima 5679 Ord word 6363 Oncon0 6364 Lim wlim 6365 suc csuc 6366 Fun wfun 6537 ‘cfv 6543 𝑅1cr1 9763 rankcrnk 9764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-r1 9765 df-rank 9766 |
This theorem is referenced by: r1rankidb 9805 rankval3b 9827 rankssb 9849 rankeq0b 9861 rankr1id 9863 rankr1b 9865 |
Copyright terms: Public domain | W3C validator |