MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1bg Structured version   Visualization version   GIF version

Theorem rankr1bg 9492
Description: A relationship between rank and 𝑅1. See rankr1ag 9491 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1bg ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))

Proof of Theorem rankr1bg
StepHypRef Expression
1 r1funlim 9455 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . 4 Lim dom 𝑅1
3 limsuc 7671 . . . 4 (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1))
42, 3ax-mp 5 . . 3 (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)
5 rankr1ag 9491 . . 3 ((𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
64, 5sylan2b 593 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
7 r1sucg 9458 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
87adantl 481 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
98eleq2d 2824 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ 𝐴 ∈ 𝒫 (𝑅1𝐵)))
10 fvex 6769 . . . 4 (𝑅1𝐵) ∈ V
1110elpw2 5264 . . 3 (𝐴 ∈ 𝒫 (𝑅1𝐵) ↔ 𝐴 ⊆ (𝑅1𝐵))
129, 11bitr2di 287 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵)))
13 rankon 9484 . . 3 (rank‘𝐴) ∈ On
14 limord 6310 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
152, 14ax-mp 5 . . . . 5 Ord dom 𝑅1
16 ordelon 6275 . . . . 5 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
1715, 16mpan 686 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
1817adantl 481 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
19 onsssuc 6338 . . 3 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2013, 18, 19sylancr 586 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
216, 12, 203bitr4d 310 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530   cuni 4836  dom cdm 5580  cima 5583  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  Fun wfun 6412  cfv 6418  𝑅1cr1 9451  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  r1rankidb  9493  rankval3b  9515  rankssb  9537  rankeq0b  9549  rankr1id  9551  rankr1b  9553
  Copyright terms: Public domain W3C validator