Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankr1bg | Structured version Visualization version GIF version |
Description: A relationship between rank and 𝑅1. See rankr1ag 9491 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1bg | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 9455 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 485 | . . . 4 ⊢ Lim dom 𝑅1 |
3 | limsuc 7671 | . . . 4 ⊢ (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1) |
5 | rankr1ag 9491 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
6 | 4, 5 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) |
7 | r1sucg 9458 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
9 | 8 | eleq2d 2824 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ 𝐴 ∈ 𝒫 (𝑅1‘𝐵))) |
10 | fvex 6769 | . . . 4 ⊢ (𝑅1‘𝐵) ∈ V | |
11 | 10 | elpw2 5264 | . . 3 ⊢ (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵)) |
12 | 9, 11 | bitr2di 287 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
13 | rankon 9484 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
14 | limord 6310 | . . . . . 6 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
15 | 2, 14 | ax-mp 5 | . . . . 5 ⊢ Ord dom 𝑅1 |
16 | ordelon 6275 | . . . . 5 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) | |
17 | 15, 16 | mpan 686 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) |
19 | onsssuc 6338 | . . 3 ⊢ (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
20 | 13, 18, 19 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) |
21 | 6, 12, 20 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 dom cdm 5580 “ cima 5583 Ord word 6250 Oncon0 6251 Lim wlim 6252 suc csuc 6253 Fun wfun 6412 ‘cfv 6418 𝑅1cr1 9451 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: r1rankidb 9493 rankval3b 9515 rankssb 9537 rankeq0b 9549 rankr1id 9551 rankr1b 9553 |
Copyright terms: Public domain | W3C validator |