MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1bg Structured version   Visualization version   GIF version

Theorem rankr1bg 8907
Description: A relationship between rank and 𝑅1. See rankr1ag 8906 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1bg ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))

Proof of Theorem rankr1bg
StepHypRef Expression
1 r1funlim 8870 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 475 . . . 4 Lim dom 𝑅1
3 limsuc 7273 . . . 4 (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1))
42, 3ax-mp 5 . . 3 (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)
5 rankr1ag 8906 . . 3 ((𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
64, 5sylan2b 583 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
7 r1sucg 8873 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
87adantl 469 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
98eleq2d 2867 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ 𝐴 ∈ 𝒫 (𝑅1𝐵)))
10 fvex 6415 . . . 4 (𝑅1𝐵) ∈ V
1110elpw2 5014 . . 3 (𝐴 ∈ 𝒫 (𝑅1𝐵) ↔ 𝐴 ⊆ (𝑅1𝐵))
129, 11syl6rbb 279 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵)))
13 rankon 8899 . . 3 (rank‘𝐴) ∈ On
14 limord 5991 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
152, 14ax-mp 5 . . . . 5 Ord dom 𝑅1
16 ordelon 5954 . . . . 5 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
1715, 16mpan 673 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
1817adantl 469 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
19 onsssuc 6020 . . 3 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2013, 18, 19sylancr 577 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
216, 12, 203bitr4d 302 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2155  wss 3763  𝒫 cpw 4345   cuni 4623  dom cdm 5305  cima 5308  Ord word 5929  Oncon0 5930  Lim wlim 5931  suc csuc 5932  Fun wfun 6089  cfv 6095  𝑅1cr1 8866  rankcrnk 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-om 7290  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-r1 8868  df-rank 8869
This theorem is referenced by:  r1rankidb  8908  rankval3b  8930  rankssb  8952  rankeq0b  8964  rankr1id  8966  rankr1b  8968
  Copyright terms: Public domain W3C validator