![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1bg | Structured version Visualization version GIF version |
Description: A relationship between rank and 𝑅1. See rankr1ag 9871 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1bg | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 9835 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 485 | . . . 4 ⊢ Lim dom 𝑅1 |
3 | limsuc 7886 | . . . 4 ⊢ (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1) |
5 | rankr1ag 9871 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
6 | 4, 5 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) |
7 | r1sucg 9838 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
9 | 8 | eleq2d 2830 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ 𝐴 ∈ 𝒫 (𝑅1‘𝐵))) |
10 | fvex 6933 | . . . 4 ⊢ (𝑅1‘𝐵) ∈ V | |
11 | 10 | elpw2 5352 | . . 3 ⊢ (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵)) |
12 | 9, 11 | bitr2di 288 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
13 | rankon 9864 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
14 | limord 6455 | . . . . . 6 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
15 | 2, 14 | ax-mp 5 | . . . . 5 ⊢ Ord dom 𝑅1 |
16 | ordelon 6419 | . . . . 5 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) | |
17 | 15, 16 | mpan 689 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) |
19 | onsssuc 6485 | . . 3 ⊢ (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
20 | 13, 18, 19 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) |
21 | 6, 12, 20 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 dom cdm 5700 “ cima 5703 Ord word 6394 Oncon0 6395 Lim wlim 6396 suc csuc 6397 Fun wfun 6567 ‘cfv 6573 𝑅1cr1 9831 rankcrnk 9832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-r1 9833 df-rank 9834 |
This theorem is referenced by: r1rankidb 9873 rankval3b 9895 rankssb 9917 rankeq0b 9929 rankr1id 9931 rankr1b 9933 |
Copyright terms: Public domain | W3C validator |