| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankr1bg | Structured version Visualization version GIF version | ||
| Description: A relationship between rank and 𝑅1. See rankr1ag 9701 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankr1bg | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim 9665 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 2 | 1 | simpri 485 | . . . 4 ⊢ Lim dom 𝑅1 |
| 3 | limsuc 7785 | . . . 4 ⊢ (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1) |
| 5 | rankr1ag 9701 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
| 6 | 4, 5 | sylan2b 594 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵)) |
| 7 | r1sucg 9668 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
| 9 | 8 | eleq2d 2817 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ 𝐴 ∈ 𝒫 (𝑅1‘𝐵))) |
| 10 | fvex 6841 | . . . 4 ⊢ (𝑅1‘𝐵) ∈ V | |
| 11 | 10 | elpw2 5274 | . . 3 ⊢ (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵)) |
| 12 | 9, 11 | bitr2di 288 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| 13 | rankon 9694 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
| 14 | limord 6373 | . . . . . 6 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 15 | 2, 14 | ax-mp 5 | . . . . 5 ⊢ Ord dom 𝑅1 |
| 16 | ordelon 6336 | . . . . 5 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) | |
| 17 | 15, 16 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) |
| 19 | onsssuc 6404 | . . 3 ⊢ (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) | |
| 20 | 13, 18, 19 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵)) |
| 21 | 6, 12, 20 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 dom cdm 5619 “ cima 5622 Ord word 6311 Oncon0 6312 Lim wlim 6313 suc csuc 6314 Fun wfun 6481 ‘cfv 6487 𝑅1cr1 9661 rankcrnk 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9663 df-rank 9664 |
| This theorem is referenced by: r1rankidb 9703 rankval3b 9725 rankssb 9747 rankeq0b 9759 rankr1id 9761 rankr1b 9763 |
| Copyright terms: Public domain | W3C validator |