MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1opn Structured version   Visualization version   GIF version

Theorem om1opn 23160
Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1bas.o 𝑂 = (𝐽 Ω1 𝑌)
om1bas.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1bas.y (𝜑𝑌𝑋)
om1opn.k 𝐾 = (TopOpen‘𝑂)
om1opn.b (𝜑𝐵 = (Base‘𝑂))
Assertion
Ref Expression
om1opn (𝜑𝐾 = ((𝐽 ^ko II) ↾t 𝐵))

Proof of Theorem om1opn
StepHypRef Expression
1 om1bas.o . . . 4 𝑂 = (𝐽 Ω1 𝑌)
2 om1bas.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 om1bas.y . . . 4 (𝜑𝑌𝑋)
41, 2, 3om1tset 23159 . . 3 (𝜑 → (𝐽 ^ko II) = (TopSet‘𝑂))
5 om1opn.b . . 3 (𝜑𝐵 = (Base‘𝑂))
64, 5oveq12d 6894 . 2 (𝜑 → ((𝐽 ^ko II) ↾t 𝐵) = ((TopSet‘𝑂) ↾t (Base‘𝑂)))
7 om1opn.k . . 3 𝐾 = (TopOpen‘𝑂)
8 eqid 2797 . . . 4 (Base‘𝑂) = (Base‘𝑂)
9 eqid 2797 . . . 4 (TopSet‘𝑂) = (TopSet‘𝑂)
108, 9topnval 16407 . . 3 ((TopSet‘𝑂) ↾t (Base‘𝑂)) = (TopOpen‘𝑂)
117, 10eqtr4i 2822 . 2 𝐾 = ((TopSet‘𝑂) ↾t (Base‘𝑂))
126, 11syl6reqr 2850 1 (𝜑𝐾 = ((𝐽 ^ko II) ↾t 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  cfv 6099  (class class class)co 6876  Basecbs 16181  TopSetcts 16270  t crest 16393  TopOpenctopn 16394  TopOnctopon 21040   ^ko cxko 21690  IIcii 23003   Ω1 comi 23125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-plusg 16277  df-tset 16283  df-rest 16395  df-topn 16396  df-topon 21041  df-om1 23130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator