Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjssdif1i | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition for the difference between two projectors to be a projector. Part 1 of Theorem 29.3 of [Halmos] p. 48 (shortened with pjssposi 30277). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjco.1 | ⊢ 𝐺 ∈ Cℋ |
pjco.2 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
pjssdif1i | ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjco.1 | . . 3 ⊢ 𝐺 ∈ Cℋ | |
2 | pjco.2 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
3 | 1, 2 | pjssdif2i 30279 | . 2 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺)))) |
4 | pjmfn 29820 | . . . . 5 ⊢ projℎ Fn Cℋ | |
5 | 1 | choccli 29412 | . . . . . 6 ⊢ (⊥‘𝐺) ∈ Cℋ |
6 | 2, 5 | chincli 29565 | . . . . 5 ⊢ (𝐻 ∩ (⊥‘𝐺)) ∈ Cℋ |
7 | fnfvelrn 6920 | . . . . 5 ⊢ ((projℎ Fn Cℋ ∧ (𝐻 ∩ (⊥‘𝐺)) ∈ Cℋ ) → (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ∈ ran projℎ) | |
8 | 4, 6, 7 | mp2an 692 | . . . 4 ⊢ (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ∈ ran projℎ |
9 | eleq1 2826 | . . . 4 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) → (((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ ↔ (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ∈ ran projℎ)) | |
10 | 8, 9 | mpbiri 261 | . . 3 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) → ((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ) |
11 | fvelrnb 6792 | . . . . . 6 ⊢ (projℎ Fn Cℋ → (((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ ↔ ∃𝑥 ∈ Cℋ (projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺)))) | |
12 | 4, 11 | ax-mp 5 | . . . . 5 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ ↔ ∃𝑥 ∈ Cℋ (projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺))) |
13 | pjige0 29796 | . . . . . . . . 9 ⊢ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ ℋ) → 0 ≤ (((projℎ‘𝑥)‘𝑦) ·ih 𝑦)) | |
14 | 13 | adantlr 715 | . . . . . . . 8 ⊢ (((𝑥 ∈ Cℋ ∧ (projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺))) ∧ 𝑦 ∈ ℋ) → 0 ≤ (((projℎ‘𝑥)‘𝑦) ·ih 𝑦)) |
15 | fveq1 6735 | . . . . . . . . . . 11 ⊢ ((projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺)) → ((projℎ‘𝑥)‘𝑦) = (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦)) | |
16 | 15 | oveq1d 7247 | . . . . . . . . . 10 ⊢ ((projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺)) → (((projℎ‘𝑥)‘𝑦) ·ih 𝑦) = ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦)) |
17 | 16 | breq2d 5080 | . . . . . . . . 9 ⊢ ((projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺)) → (0 ≤ (((projℎ‘𝑥)‘𝑦) ·ih 𝑦) ↔ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦))) |
18 | 17 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝑥 ∈ Cℋ ∧ (projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺))) ∧ 𝑦 ∈ ℋ) → (0 ≤ (((projℎ‘𝑥)‘𝑦) ·ih 𝑦) ↔ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦))) |
19 | 14, 18 | mpbid 235 | . . . . . . 7 ⊢ (((𝑥 ∈ Cℋ ∧ (projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺))) ∧ 𝑦 ∈ ℋ) → 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦)) |
20 | 19 | ralrimiva 3106 | . . . . . 6 ⊢ ((𝑥 ∈ Cℋ ∧ (projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺))) → ∀𝑦 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦)) |
21 | 20 | rexlimiva 3208 | . . . . 5 ⊢ (∃𝑥 ∈ Cℋ (projℎ‘𝑥) = ((projℎ‘𝐻) −op (projℎ‘𝐺)) → ∀𝑦 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦)) |
22 | 12, 21 | sylbi 220 | . . . 4 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ → ∀𝑦 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦)) |
23 | 1, 2 | pjssposi 30277 | . . . . 5 ⊢ (∀𝑦 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦) ↔ 𝐺 ⊆ 𝐻) |
24 | 23, 3 | bitri 278 | . . . 4 ⊢ (∀𝑦 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑦) ·ih 𝑦) ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺)))) |
25 | 22, 24 | sylib 221 | . . 3 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ → ((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺)))) |
26 | 10, 25 | impbii 212 | . 2 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ) |
27 | 3, 26 | bitri 278 | 1 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ∀wral 3062 ∃wrex 3063 ∩ cin 3880 ⊆ wss 3881 class class class wbr 5068 ran crn 5567 Fn wfn 6393 ‘cfv 6398 (class class class)co 7232 0cc0 10754 ≤ cle 10893 ℋchba 29024 ·ih csp 29027 Cℋ cch 29034 ⊥cort 29035 projℎcpjh 29042 −op chod 29045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-inf2 9281 ax-cc 10074 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-addf 10833 ax-mulf 10834 ax-hilex 29104 ax-hfvadd 29105 ax-hvcom 29106 ax-hvass 29107 ax-hv0cl 29108 ax-hvaddid 29109 ax-hfvmul 29110 ax-hvmulid 29111 ax-hvmulass 29112 ax-hvdistr1 29113 ax-hvdistr2 29114 ax-hvmul0 29115 ax-hfi 29184 ax-his1 29187 ax-his2 29188 ax-his3 29189 ax-his4 29190 ax-hcompl 29307 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-oadd 8227 df-omul 8228 df-er 8412 df-map 8531 df-pm 8532 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-fi 9052 df-sup 9083 df-inf 9084 df-oi 9151 df-card 9580 df-acn 9583 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-q 12570 df-rp 12612 df-xneg 12729 df-xadd 12730 df-xmul 12731 df-ioo 12964 df-ico 12966 df-icc 12967 df-fz 13121 df-fzo 13264 df-fl 13392 df-seq 13600 df-exp 13661 df-hash 13922 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-clim 15074 df-rlim 15075 df-sum 15275 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-starv 16842 df-sca 16843 df-vsca 16844 df-ip 16845 df-tset 16846 df-ple 16847 df-ds 16849 df-unif 16850 df-hom 16851 df-cco 16852 df-rest 16952 df-topn 16953 df-0g 16971 df-gsum 16972 df-topgen 16973 df-pt 16974 df-prds 16977 df-xrs 17032 df-qtop 17037 df-imas 17038 df-xps 17040 df-mre 17114 df-mrc 17115 df-acs 17117 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-mulg 18514 df-cntz 18736 df-cmn 19197 df-psmet 20380 df-xmet 20381 df-met 20382 df-bl 20383 df-mopn 20384 df-fbas 20385 df-fg 20386 df-cnfld 20389 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-cn 22148 df-cnp 22149 df-lm 22150 df-haus 22236 df-tx 22483 df-hmeo 22676 df-fil 22767 df-fm 22859 df-flim 22860 df-flf 22861 df-xms 23242 df-ms 23243 df-tms 23244 df-cfil 24176 df-cau 24177 df-cmet 24178 df-grpo 28598 df-gid 28599 df-ginv 28600 df-gdiv 28601 df-ablo 28650 df-vc 28664 df-nv 28697 df-va 28700 df-ba 28701 df-sm 28702 df-0v 28703 df-vs 28704 df-nmcv 28705 df-ims 28706 df-dip 28806 df-ssp 28827 df-ph 28918 df-cbn 28968 df-hnorm 29073 df-hba 29074 df-hvsub 29076 df-hlim 29077 df-hcau 29078 df-sh 29312 df-ch 29326 df-oc 29357 df-ch0 29358 df-shs 29413 df-pjh 29500 df-hodif 29837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |