![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pj11 | Structured version Visualization version GIF version |
Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pj11 | ⊢ ((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ((projℎ‘𝐺) = (projℎ‘𝐻) ↔ 𝐺 = 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6901 | . . 3 ⊢ (𝐺 = if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) → ((projℎ‘𝐺) = (projℎ‘𝐻) ↔ (projℎ‘if(𝐺 ∈ Cℋ , 𝐺, 0ℋ)) = (projℎ‘𝐻))) | |
2 | eqeq1 2730 | . . 3 ⊢ (𝐺 = if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) → (𝐺 = 𝐻 ↔ if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) = 𝐻)) | |
3 | 1, 2 | bibi12d 344 | . 2 ⊢ (𝐺 = if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) → (((projℎ‘𝐺) = (projℎ‘𝐻) ↔ 𝐺 = 𝐻) ↔ ((projℎ‘if(𝐺 ∈ Cℋ , 𝐺, 0ℋ)) = (projℎ‘𝐻) ↔ if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) = 𝐻))) |
4 | fveq2 6892 | . . . 4 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, 0ℋ) → (projℎ‘𝐻) = (projℎ‘if(𝐻 ∈ Cℋ , 𝐻, 0ℋ))) | |
5 | 4 | eqeq2d 2737 | . . 3 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, 0ℋ) → ((projℎ‘if(𝐺 ∈ Cℋ , 𝐺, 0ℋ)) = (projℎ‘𝐻) ↔ (projℎ‘if(𝐺 ∈ Cℋ , 𝐺, 0ℋ)) = (projℎ‘if(𝐻 ∈ Cℋ , 𝐻, 0ℋ)))) |
6 | eqeq2 2738 | . . 3 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, 0ℋ) → (if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) = 𝐻 ↔ if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) = if(𝐻 ∈ Cℋ , 𝐻, 0ℋ))) | |
7 | 5, 6 | bibi12d 344 | . 2 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, 0ℋ) → (((projℎ‘if(𝐺 ∈ Cℋ , 𝐺, 0ℋ)) = (projℎ‘𝐻) ↔ if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) = 𝐻) ↔ ((projℎ‘if(𝐺 ∈ Cℋ , 𝐺, 0ℋ)) = (projℎ‘if(𝐻 ∈ Cℋ , 𝐻, 0ℋ)) ↔ if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) = if(𝐻 ∈ Cℋ , 𝐻, 0ℋ)))) |
8 | h0elch 31184 | . . . 4 ⊢ 0ℋ ∈ Cℋ | |
9 | 8 | elimel 4594 | . . 3 ⊢ if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) ∈ Cℋ |
10 | 8 | elimel 4594 | . . 3 ⊢ if(𝐻 ∈ Cℋ , 𝐻, 0ℋ) ∈ Cℋ |
11 | 9, 10 | pj11i 31640 | . 2 ⊢ ((projℎ‘if(𝐺 ∈ Cℋ , 𝐺, 0ℋ)) = (projℎ‘if(𝐻 ∈ Cℋ , 𝐻, 0ℋ)) ↔ if(𝐺 ∈ Cℋ , 𝐺, 0ℋ) = if(𝐻 ∈ Cℋ , 𝐻, 0ℋ)) |
12 | 3, 7, 11 | dedth2h 4584 | 1 ⊢ ((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ((projℎ‘𝐺) = (projℎ‘𝐻) ↔ 𝐺 = 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ifcif 4525 ‘cfv 6545 Cℋ cch 30858 0ℋc0h 30864 projℎcpjh 30866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-inf2 9676 ax-cc 10468 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 ax-addf 11227 ax-mulf 11228 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-iin 4998 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-isom 6554 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8848 df-pm 8849 df-ixp 8918 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-fsupp 9398 df-fi 9446 df-sup 9477 df-inf 9478 df-oi 9545 df-card 9974 df-acn 9977 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12604 df-dec 12723 df-uz 12868 df-q 12978 df-rp 13022 df-xneg 13139 df-xadd 13140 df-xmul 13141 df-ioo 13375 df-ico 13377 df-icc 13378 df-fz 13532 df-fzo 13675 df-fl 13805 df-seq 14015 df-exp 14075 df-hash 14342 df-cj 15098 df-re 15099 df-im 15100 df-sqrt 15234 df-abs 15235 df-clim 15484 df-rlim 15485 df-sum 15685 df-struct 17143 df-sets 17160 df-slot 17178 df-ndx 17190 df-base 17208 df-ress 17237 df-plusg 17273 df-mulr 17274 df-starv 17275 df-sca 17276 df-vsca 17277 df-ip 17278 df-tset 17279 df-ple 17280 df-ds 17282 df-unif 17283 df-hom 17284 df-cco 17285 df-rest 17431 df-topn 17432 df-0g 17450 df-gsum 17451 df-topgen 17452 df-pt 17453 df-prds 17456 df-xrs 17511 df-qtop 17516 df-imas 17517 df-xps 17519 df-mre 17593 df-mrc 17594 df-acs 17596 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18768 df-mulg 19057 df-cntz 19306 df-cmn 19775 df-psmet 21330 df-xmet 21331 df-met 21332 df-bl 21333 df-mopn 21334 df-fbas 21335 df-fg 21336 df-cnfld 21339 df-top 22883 df-topon 22900 df-topsp 22922 df-bases 22936 df-cld 23010 df-ntr 23011 df-cls 23012 df-nei 23089 df-cn 23218 df-cnp 23219 df-lm 23220 df-haus 23306 df-tx 23553 df-hmeo 23746 df-fil 23837 df-fm 23929 df-flim 23930 df-flf 23931 df-xms 24313 df-ms 24314 df-tms 24315 df-cfil 25270 df-cau 25271 df-cmet 25272 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-ssp 30651 df-ph 30742 df-cbn 30792 df-hnorm 30897 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-shs 31237 df-pjh 31324 |
This theorem is referenced by: pjmf1 31645 |
Copyright terms: Public domain | W3C validator |