![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioomnf | Structured version Visualization version GIF version |
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elioomnf | ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10298 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | elioo2 12421 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) | |
3 | 1, 2 | mpan 670 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) |
4 | an32 625 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) | |
5 | df-3an 1073 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴)) | |
6 | mnflt 12162 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -∞ < 𝐵) | |
7 | 6 | adantr 466 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → -∞ < 𝐵) |
8 | 7 | pm4.71i 549 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) |
9 | 4, 5, 8 | 3bitr4i 292 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)) |
10 | 3, 9 | syl6bb 276 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 ℝcr 10137 -∞cmnf 10274 ℝ*cxr 10275 < clt 10276 (,)cioo 12380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-pre-lttri 10212 ax-pre-lttrn 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-ioo 12384 |
This theorem is referenced by: bndth 22977 mbfmulc2lem 23634 mbfposr 23639 ismbf3d 23641 mbfi1fseqlem4 23705 itg2monolem1 23737 dvne0 23994 mbfposadd 33789 itg2addnclem2 33794 iblabsnclem 33805 ftc1anclem1 33817 ftc1anclem6 33822 rfcnpre2 39712 |
Copyright terms: Public domain | W3C validator |