| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elioomnf | Structured version Visualization version GIF version | ||
| Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elioomnf | ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11318 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | elioo2 13428 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) |
| 4 | an32 646 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) | |
| 5 | df-3an 1089 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴)) | |
| 6 | mnflt 13165 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -∞ < 𝐵) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → -∞ < 𝐵) |
| 8 | 7 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) |
| 9 | 4, 5, 8 | 3bitr4i 303 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)) |
| 10 | 3, 9 | bitrdi 287 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 (,)cioo 13387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-ioo 13391 |
| This theorem is referenced by: bndth 24990 mbfmulc2lem 25682 mbfposr 25687 ismbf3d 25689 mbfi1fseqlem4 25753 itg2monolem1 25785 dvne0 26050 mbfposadd 37674 itg2addnclem2 37679 iblabsnclem 37690 ftc1anclem1 37700 ftc1anclem6 37705 redvmptabs 42390 rfcnpre2 45036 i0oii 48817 |
| Copyright terms: Public domain | W3C validator |