Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elioomnf | Structured version Visualization version GIF version |
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elioomnf | ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10890 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | elioo2 12976 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) | |
3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) |
4 | an32 646 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) | |
5 | df-3an 1091 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴)) | |
6 | mnflt 12715 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -∞ < 𝐵) | |
7 | 6 | adantr 484 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → -∞ < 𝐵) |
8 | 7 | pm4.71i 563 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) |
9 | 4, 5, 8 | 3bitr4i 306 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)) |
10 | 3, 9 | bitrdi 290 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 ℝcr 10728 -∞cmnf 10865 ℝ*cxr 10866 < clt 10867 (,)cioo 12935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-ioo 12939 |
This theorem is referenced by: bndth 23855 mbfmulc2lem 24544 mbfposr 24549 ismbf3d 24551 mbfi1fseqlem4 24616 itg2monolem1 24648 dvne0 24908 mbfposadd 35561 itg2addnclem2 35566 iblabsnclem 35577 ftc1anclem1 35587 ftc1anclem6 35592 rfcnpre2 42247 i0oii 45886 |
Copyright terms: Public domain | W3C validator |