MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellogdm Structured version   Visualization version   GIF version

Theorem ellogdm 26699
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
ellogdm (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))

Proof of Theorem ellogdm
StepHypRef Expression
1 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
21eleq2i 2836 . 2 (𝐴𝐷𝐴 ∈ (ℂ ∖ (-∞(,]0)))
3 eldif 3986 . 2 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)))
4 mnfxr 11347 . . . . . . 7 -∞ ∈ ℝ*
5 0re 11292 . . . . . . 7 0 ∈ ℝ
6 elioc2 13470 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
74, 5, 6mp2an 691 . . . . . 6 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
8 df-3an 1089 . . . . . 6 ((𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
9 mnflt 13186 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ < 𝐴)
109pm4.71i 559 . . . . . . . 8 (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴))
1110anbi1i 623 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
12 lenlt 11368 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
135, 12mpan2 690 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
14 elrp 13059 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
1514baib 535 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴))
1615notbid 318 . . . . . . . . 9 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴))
1713, 16bitr4d 282 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+))
1817pm5.32i 574 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
1911, 18bitr3i 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
207, 8, 193bitri 297 . . . . 5 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2120notbii 320 . . . 4 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
22 iman 401 . . . 4 ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2321, 22bitr4i 278 . . 3 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
2423anbi2i 622 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
252, 3, 243bitri 297 1 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  +crp 13057  (,]cioc 13408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-rp 13058  df-ioc 13412
This theorem is referenced by:  logdmn0  26700  logdmnrp  26701  logdmss  26702  logcnlem2  26703  logcnlem3  26704  logcnlem4  26705  logcnlem5  26706  logcn  26707  dvloglem  26708  logf1o2  26710  cxpcn  26805  cxpcnOLD  26806  cxpcn2  26807  dmlogdmgm  27085  rpdmgm  27086  lgamgulmlem2  27091  lgamcvg2  27116  logdivsqrle  34627  binomcxplemdvbinom  44322
  Copyright terms: Public domain W3C validator