MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellogdm Structured version   Visualization version   GIF version

Theorem ellogdm 26546
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
ellogdm (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))

Proof of Theorem ellogdm
StepHypRef Expression
1 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
21eleq2i 2820 . 2 (𝐴𝐷𝐴 ∈ (ℂ ∖ (-∞(,]0)))
3 eldif 3913 . 2 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)))
4 mnfxr 11172 . . . . . . 7 -∞ ∈ ℝ*
5 0re 11117 . . . . . . 7 0 ∈ ℝ
6 elioc2 13312 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
74, 5, 6mp2an 692 . . . . . 6 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
8 df-3an 1088 . . . . . 6 ((𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
9 mnflt 13025 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ < 𝐴)
109pm4.71i 559 . . . . . . . 8 (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴))
1110anbi1i 624 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
12 lenlt 11194 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
135, 12mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
14 elrp 12895 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
1514baib 535 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴))
1615notbid 318 . . . . . . . . 9 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴))
1713, 16bitr4d 282 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+))
1817pm5.32i 574 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
1911, 18bitr3i 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
207, 8, 193bitri 297 . . . . 5 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2120notbii 320 . . . 4 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
22 iman 401 . . . 4 ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2321, 22bitr4i 278 . . 3 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
2423anbi2i 623 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
252, 3, 243bitri 297 1 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3900   class class class wbr 5092  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  +crp 12893  (,]cioc 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-addrcl 11070  ax-rnegex 11080  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-rp 12894  df-ioc 13253
This theorem is referenced by:  logdmn0  26547  logdmnrp  26548  logdmss  26549  logcnlem2  26550  logcnlem3  26551  logcnlem4  26552  logcnlem5  26553  logcn  26554  dvloglem  26555  logf1o2  26557  cxpcn  26652  cxpcnOLD  26653  cxpcn2  26654  dmlogdmgm  26932  rpdmgm  26933  lgamgulmlem2  26938  lgamcvg2  26963  logdivsqrle  34618  binomcxplemdvbinom  44330
  Copyright terms: Public domain W3C validator