MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellogdm Structured version   Visualization version   GIF version

Theorem ellogdm 26696
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
ellogdm (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))

Proof of Theorem ellogdm
StepHypRef Expression
1 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
21eleq2i 2831 . 2 (𝐴𝐷𝐴 ∈ (ℂ ∖ (-∞(,]0)))
3 eldif 3973 . 2 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)))
4 mnfxr 11316 . . . . . . 7 -∞ ∈ ℝ*
5 0re 11261 . . . . . . 7 0 ∈ ℝ
6 elioc2 13447 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
74, 5, 6mp2an 692 . . . . . 6 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
8 df-3an 1088 . . . . . 6 ((𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
9 mnflt 13163 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ < 𝐴)
109pm4.71i 559 . . . . . . . 8 (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴))
1110anbi1i 624 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
12 lenlt 11337 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
135, 12mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
14 elrp 13034 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
1514baib 535 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴))
1615notbid 318 . . . . . . . . 9 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴))
1713, 16bitr4d 282 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+))
1817pm5.32i 574 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
1911, 18bitr3i 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
207, 8, 193bitri 297 . . . . 5 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2120notbii 320 . . . 4 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
22 iman 401 . . . 4 ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2321, 22bitr4i 278 . . 3 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
2423anbi2i 623 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
252, 3, 243bitri 297 1 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cdif 3960   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  +crp 13032  (,]cioc 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-addrcl 11214  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-rp 13033  df-ioc 13389
This theorem is referenced by:  logdmn0  26697  logdmnrp  26698  logdmss  26699  logcnlem2  26700  logcnlem3  26701  logcnlem4  26702  logcnlem5  26703  logcn  26704  dvloglem  26705  logf1o2  26707  cxpcn  26802  cxpcnOLD  26803  cxpcn2  26804  dmlogdmgm  27082  rpdmgm  27083  lgamgulmlem2  27088  lgamcvg2  27113  logdivsqrle  34644  binomcxplemdvbinom  44349
  Copyright terms: Public domain W3C validator