![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellogdm | Structured version Visualization version GIF version |
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
ellogdm | ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐴 ∈ (ℂ ∖ (-∞(,]0))) |
3 | eldif 3986 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0))) | |
4 | mnfxr 11347 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
5 | 0re 11292 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
6 | elioc2 13470 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0))) | |
7 | 4, 5, 6 | mp2an 691 | . . . . . 6 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0)) |
8 | df-3an 1089 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) | |
9 | mnflt 13186 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
10 | 9 | pm4.71i 559 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴)) |
11 | 10 | anbi1i 623 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) |
12 | lenlt 11368 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) | |
13 | 5, 12 | mpan2 690 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) |
14 | elrp 13059 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
15 | 14 | baib 535 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴)) |
16 | 15 | notbid 318 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴)) |
17 | 13, 16 | bitr4d 282 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+)) |
18 | 17 | pm5.32i 574 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
19 | 11, 18 | bitr3i 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
20 | 7, 8, 19 | 3bitri 297 | . . . . 5 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
21 | 20 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
22 | iman 401 | . . . 4 ⊢ ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) | |
23 | 21, 22 | bitr4i 278 | . . 3 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
24 | 23 | anbi2i 622 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
25 | 2, 3, 24 | 3bitri 297 | 1 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 ℝ+crp 13057 (,]cioc 13408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-rp 13058 df-ioc 13412 |
This theorem is referenced by: logdmn0 26700 logdmnrp 26701 logdmss 26702 logcnlem2 26703 logcnlem3 26704 logcnlem4 26705 logcnlem5 26706 logcn 26707 dvloglem 26708 logf1o2 26710 cxpcn 26805 cxpcnOLD 26806 cxpcn2 26807 dmlogdmgm 27085 rpdmgm 27086 lgamgulmlem2 27091 lgamcvg2 27116 logdivsqrle 34627 binomcxplemdvbinom 44322 |
Copyright terms: Public domain | W3C validator |