MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellogdm Structured version   Visualization version   GIF version

Theorem ellogdm 24784
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
ellogdm (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))

Proof of Theorem ellogdm
StepHypRef Expression
1 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
21eleq2i 2898 . 2 (𝐴𝐷𝐴 ∈ (ℂ ∖ (-∞(,]0)))
3 eldif 3808 . 2 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)))
4 mnfxr 10414 . . . . . . 7 -∞ ∈ ℝ*
5 0re 10358 . . . . . . 7 0 ∈ ℝ
6 elioc2 12524 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
74, 5, 6mp2an 685 . . . . . 6 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
8 df-3an 1115 . . . . . 6 ((𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
9 mnflt 12243 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ < 𝐴)
109pm4.71i 557 . . . . . . . 8 (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴))
1110anbi1i 619 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
12 lenlt 10435 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
135, 12mpan2 684 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
14 elrp 12114 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
1514baib 533 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴))
1615notbid 310 . . . . . . . . 9 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴))
1713, 16bitr4d 274 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+))
1817pm5.32i 572 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
1911, 18bitr3i 269 . . . . . 6 (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
207, 8, 193bitri 289 . . . . 5 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2120notbii 312 . . . 4 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
22 iman 392 . . . 4 ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2321, 22bitr4i 270 . . 3 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
2423anbi2i 618 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
252, 3, 243bitri 289 1 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  cdif 3795   class class class wbr 4873  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  -∞cmnf 10389  *cxr 10390   < clt 10391  cle 10392  +crp 12112  (,]cioc 12464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-addrcl 10313  ax-rnegex 10323  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-rp 12113  df-ioc 12468
This theorem is referenced by:  logdmn0  24785  logdmnrp  24786  logdmss  24787  logcnlem2  24788  logcnlem3  24789  logcnlem4  24790  logcnlem5  24791  logcn  24792  dvloglem  24793  logf1o2  24795  cxpcn  24888  cxpcn2  24889  dmlogdmgm  25163  rpdmgm  25164  lgamgulmlem2  25169  lgamcvg2  25194  logdivsqrle  31277  binomcxplemdvbinom  39392
  Copyright terms: Public domain W3C validator