MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellogdm Structured version   Visualization version   GIF version

Theorem ellogdm 26524
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
ellogdm (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))

Proof of Theorem ellogdm
StepHypRef Expression
1 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
21eleq2i 2820 . 2 (𝐴𝐷𝐴 ∈ (ℂ ∖ (-∞(,]0)))
3 eldif 3921 . 2 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)))
4 mnfxr 11207 . . . . . . 7 -∞ ∈ ℝ*
5 0re 11152 . . . . . . 7 0 ∈ ℝ
6 elioc2 13346 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
74, 5, 6mp2an 692 . . . . . 6 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
8 df-3an 1088 . . . . . 6 ((𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
9 mnflt 13059 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ < 𝐴)
109pm4.71i 559 . . . . . . . 8 (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴))
1110anbi1i 624 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0))
12 lenlt 11228 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
135, 12mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴))
14 elrp 12929 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
1514baib 535 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴))
1615notbid 318 . . . . . . . . 9 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴))
1713, 16bitr4d 282 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+))
1817pm5.32i 574 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
1911, 18bitr3i 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
207, 8, 193bitri 297 . . . . 5 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2120notbii 320 . . . 4 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
22 iman 401 . . . 4 ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+))
2321, 22bitr4i 278 . . 3 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
2423anbi2i 623 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
252, 3, 243bitri 297 1 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3908   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  +crp 12927  (,]cioc 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-addrcl 11105  ax-rnegex 11115  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-rp 12928  df-ioc 13287
This theorem is referenced by:  logdmn0  26525  logdmnrp  26526  logdmss  26527  logcnlem2  26528  logcnlem3  26529  logcnlem4  26530  logcnlem5  26531  logcn  26532  dvloglem  26533  logf1o2  26535  cxpcn  26630  cxpcnOLD  26631  cxpcn2  26632  dmlogdmgm  26910  rpdmgm  26911  lgamgulmlem2  26916  lgamcvg2  26941  logdivsqrle  34614  binomcxplemdvbinom  44315
  Copyright terms: Public domain W3C validator