| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellogdm | Structured version Visualization version GIF version | ||
| Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| ellogdm | ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐴 ∈ (ℂ ∖ (-∞(,]0))) |
| 3 | eldif 3913 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0))) | |
| 4 | mnfxr 11172 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 5 | 0re 11117 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 6 | elioc2 13312 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0)) |
| 8 | df-3an 1088 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) | |
| 9 | mnflt 13025 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 10 | 9 | pm4.71i 559 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴)) |
| 11 | 10 | anbi1i 624 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) |
| 12 | lenlt 11194 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) | |
| 13 | 5, 12 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) |
| 14 | elrp 12895 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 15 | 14 | baib 535 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴)) |
| 16 | 15 | notbid 318 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴)) |
| 17 | 13, 16 | bitr4d 282 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+)) |
| 18 | 17 | pm5.32i 574 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 19 | 11, 18 | bitr3i 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 20 | 7, 8, 19 | 3bitri 297 | . . . . 5 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 21 | 20 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 22 | iman 401 | . . . 4 ⊢ ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) | |
| 23 | 21, 22 | bitr4i 278 | . . 3 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
| 24 | 23 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| 25 | 2, 3, 24 | 3bitri 297 | 1 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 class class class wbr 5092 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 -∞cmnf 11147 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ℝ+crp 12893 (,]cioc 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-rp 12894 df-ioc 13253 |
| This theorem is referenced by: logdmn0 26547 logdmnrp 26548 logdmss 26549 logcnlem2 26550 logcnlem3 26551 logcnlem4 26552 logcnlem5 26553 logcn 26554 dvloglem 26555 logf1o2 26557 cxpcn 26652 cxpcnOLD 26653 cxpcn2 26654 dmlogdmgm 26932 rpdmgm 26933 lgamgulmlem2 26938 lgamcvg2 26963 logdivsqrle 34618 binomcxplemdvbinom 44330 |
| Copyright terms: Public domain | W3C validator |