| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellogdm | Structured version Visualization version GIF version | ||
| Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| ellogdm | ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐴 ∈ (ℂ ∖ (-∞(,]0))) |
| 3 | eldif 3907 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0))) | |
| 4 | mnfxr 11169 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 5 | 0re 11114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 6 | elioc2 13309 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0)) |
| 8 | df-3an 1088 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) | |
| 9 | mnflt 13022 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 10 | 9 | pm4.71i 559 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴)) |
| 11 | 10 | anbi1i 624 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) |
| 12 | lenlt 11191 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) | |
| 13 | 5, 12 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) |
| 14 | elrp 12892 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 15 | 14 | baib 535 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴)) |
| 16 | 15 | notbid 318 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴)) |
| 17 | 13, 16 | bitr4d 282 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+)) |
| 18 | 17 | pm5.32i 574 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 19 | 11, 18 | bitr3i 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 20 | 7, 8, 19 | 3bitri 297 | . . . . 5 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 21 | 20 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 22 | iman 401 | . . . 4 ⊢ ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) | |
| 23 | 21, 22 | bitr4i 278 | . . 3 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
| 24 | 23 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| 25 | 2, 3, 24 | 3bitri 297 | 1 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 ℝ+crp 12890 (,]cioc 13246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-rp 12891 df-ioc 13250 |
| This theorem is referenced by: logdmn0 26576 logdmnrp 26577 logdmss 26578 logcnlem2 26579 logcnlem3 26580 logcnlem4 26581 logcnlem5 26582 logcn 26583 dvloglem 26584 logf1o2 26586 cxpcn 26681 cxpcnOLD 26682 cxpcn2 26683 dmlogdmgm 26961 rpdmgm 26962 lgamgulmlem2 26967 lgamcvg2 26992 logdivsqrle 34663 binomcxplemdvbinom 44456 |
| Copyright terms: Public domain | W3C validator |