| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellogdm | Structured version Visualization version GIF version | ||
| Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| ellogdm | ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐴 ∈ (ℂ ∖ (-∞(,]0))) |
| 3 | eldif 3921 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0))) | |
| 4 | mnfxr 11207 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 5 | 0re 11152 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 6 | elioc2 13346 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0)) |
| 8 | df-3an 1088 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) | |
| 9 | mnflt 13059 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 10 | 9 | pm4.71i 559 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴)) |
| 11 | 10 | anbi1i 624 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ ((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0)) |
| 12 | lenlt 11228 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) | |
| 13 | 5, 12 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) |
| 14 | elrp 12929 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 15 | 14 | baib 535 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℝ+ ↔ 0 < 𝐴)) |
| 16 | 15 | notbid 318 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴)) |
| 17 | 13, 16 | bitr4d 282 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+)) |
| 18 | 17 | pm5.32i 574 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 19 | 11, 18 | bitr3i 277 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ -∞ < 𝐴) ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 20 | 7, 8, 19 | 3bitri 297 | . . . . 5 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 21 | 20 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) |
| 22 | iman 401 | . . . 4 ⊢ ((𝐴 ∈ ℝ → 𝐴 ∈ ℝ+) ↔ ¬ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+)) | |
| 23 | 21, 22 | bitr4i 278 | . . 3 ⊢ (¬ 𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
| 24 | 23 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| 25 | 2, 3, 24 | 3bitri 297 | 1 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 class class class wbr 5102 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 ℝ+crp 12927 (,]cioc 13283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-rp 12928 df-ioc 13287 |
| This theorem is referenced by: logdmn0 26525 logdmnrp 26526 logdmss 26527 logcnlem2 26528 logcnlem3 26529 logcnlem4 26530 logcnlem5 26531 logcn 26532 dvloglem 26533 logf1o2 26535 cxpcn 26630 cxpcnOLD 26631 cxpcn2 26632 dmlogdmgm 26910 rpdmgm 26911 lgamgulmlem2 26916 lgamcvg2 26941 logdivsqrle 34614 binomcxplemdvbinom 44315 |
| Copyright terms: Public domain | W3C validator |