MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioopnf Structured version   Visualization version   GIF version

Theorem elioopnf 13175
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioopnf (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))

Proof of Theorem elioopnf
StepHypRef Expression
1 pnfxr 11029 . . 3 +∞ ∈ ℝ*
2 elioo2 13120 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
31, 2mpan2 688 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
4 df-3an 1088 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
5 ltpnf 12856 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
65adantr 481 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 < +∞)
76pm4.71i 560 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
84, 7bitr4i 277 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
93, 8bitrdi 287 1 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  (,)cioo 13079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083
This theorem is referenced by:  mbfmulc2lem  24811  mbfposr  24816  ismbf3d  24818  mbfaddlem  24824  mbfsup  24828  itg2gt0  24925  itg2cnlem1  24926  itg2cnlem2  24927  lhop2  25179  dvfsumlem2  25191  dvfsumlem3  25192  dvfsumrlimge0  25194  dvfsumrlim  25195  dvfsumrlim2  25196  pntpbnd1a  26733  pntpbnd2  26735  pntibndlem2  26739  pntibndlem3  26740  pntlemi  26752  pntlemo  26755  relowlssretop  35534  itg2addnclem2  35829  iblabsnclem  35840  ftc1anclem1  35850  ftc1anclem6  35855  rfcnpre1  42562  regt1loggt0  45882  rege1logbrege0  45904  rege1logbzge0  45905  io1ii  46214
  Copyright terms: Public domain W3C validator