MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioopnf Structured version   Visualization version   GIF version

Theorem elioopnf 12466
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioopnf (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))

Proof of Theorem elioopnf
StepHypRef Expression
1 pnfxr 10292 . . 3 +∞ ∈ ℝ*
2 elioo2 12414 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
31, 2mpan2 671 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
4 df-3an 1073 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
5 ltpnf 12152 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
65adantr 466 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 < +∞)
76pm4.71i 549 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
84, 7bitr4i 267 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
93, 8syl6bb 276 1 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wcel 2145   class class class wbr 4786  (class class class)co 6791  cr 10135  +∞cpnf 10271  *cxr 10273   < clt 10274  (,)cioo 12373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-pre-lttri 10210  ax-pre-lttrn 10211
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-ioo 12377
This theorem is referenced by:  mbfmulc2lem  23627  mbfposr  23632  ismbf3d  23634  mbfaddlem  23640  mbfsup  23644  itg2gt0  23740  itg2cnlem1  23741  itg2cnlem2  23742  lhop2  23991  dvfsumlem2  24003  dvfsumlem3  24004  dvfsumrlimge0  24006  dvfsumrlim  24007  dvfsumrlim2  24008  pntpbnd1a  25488  pntpbnd2  25490  pntibndlem2  25494  pntibndlem3  25495  pntlemi  25507  pntlemo  25510  relowlssretop  33541  itg2addnclem2  33787  iblabsnclem  33798  ftc1anclem1  33810  ftc1anclem6  33815  rfcnpre1  39693  regt1loggt0  42851  rege1logbrege0  42873  rege1logbzge0  42874
  Copyright terms: Public domain W3C validator