Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elioopnf | Structured version Visualization version GIF version |
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elioopnf | ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10960 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | elioo2 13049 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞))) |
4 | df-3an 1087 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞)) | |
5 | ltpnf 12785 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 < +∞) |
7 | 6 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞)) |
8 | 4, 7 | bitr4i 277 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
9 | 3, 8 | bitrdi 286 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 |
This theorem is referenced by: mbfmulc2lem 24716 mbfposr 24721 ismbf3d 24723 mbfaddlem 24729 mbfsup 24733 itg2gt0 24830 itg2cnlem1 24831 itg2cnlem2 24832 lhop2 25084 dvfsumlem2 25096 dvfsumlem3 25097 dvfsumrlimge0 25099 dvfsumrlim 25100 dvfsumrlim2 25101 pntpbnd1a 26638 pntpbnd2 26640 pntibndlem2 26644 pntibndlem3 26645 pntlemi 26657 pntlemo 26660 relowlssretop 35461 itg2addnclem2 35756 iblabsnclem 35767 ftc1anclem1 35777 ftc1anclem6 35782 rfcnpre1 42451 regt1loggt0 45770 rege1logbrege0 45792 rege1logbzge0 45793 io1ii 46102 |
Copyright terms: Public domain | W3C validator |