![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioopnf | Structured version Visualization version GIF version |
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elioopnf | ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10541 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | elioo2 12629 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞))) |
4 | df-3an 1082 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞)) | |
5 | ltpnf 12365 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 < +∞) |
7 | 6 | pm4.71i 560 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞)) |
8 | 4, 7 | bitr4i 279 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
9 | 3, 8 | syl6bb 288 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2081 class class class wbr 4962 (class class class)co 7016 ℝcr 10382 +∞cpnf 10518 ℝ*cxr 10520 < clt 10521 (,)cioo 12588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-pre-lttri 10457 ax-pre-lttrn 10458 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-po 5362 df-so 5363 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-1st 7545 df-2nd 7546 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-ioo 12592 |
This theorem is referenced by: mbfmulc2lem 23931 mbfposr 23936 ismbf3d 23938 mbfaddlem 23944 mbfsup 23948 itg2gt0 24044 itg2cnlem1 24045 itg2cnlem2 24046 lhop2 24295 dvfsumlem2 24307 dvfsumlem3 24308 dvfsumrlimge0 24310 dvfsumrlim 24311 dvfsumrlim2 24312 pntpbnd1a 25843 pntpbnd2 25845 pntibndlem2 25849 pntibndlem3 25850 pntlemi 25862 pntlemo 25865 relowlssretop 34175 itg2addnclem2 34475 iblabsnclem 34486 ftc1anclem1 34498 ftc1anclem6 34503 rfcnpre1 40815 regt1loggt0 44077 rege1logbrege0 44099 rege1logbzge0 44100 |
Copyright terms: Public domain | W3C validator |