MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioopnf Structured version   Visualization version   GIF version

Theorem elioopnf 13483
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioopnf (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))

Proof of Theorem elioopnf
StepHypRef Expression
1 pnfxr 11315 . . 3 +∞ ∈ ℝ*
2 elioo2 13428 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
31, 2mpan2 691 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
4 df-3an 1089 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
5 ltpnf 13162 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
65adantr 480 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 < +∞)
76pm4.71i 559 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
84, 7bitr4i 278 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
93, 8bitrdi 287 1 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  (,)cioo 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391
This theorem is referenced by:  mbfmulc2lem  25682  mbfposr  25687  ismbf3d  25689  mbfaddlem  25695  mbfsup  25699  itg2gt0  25795  itg2cnlem1  25796  itg2cnlem2  25797  lhop2  26054  dvfsumlem2  26067  dvfsumlem2OLD  26068  dvfsumlem3  26069  dvfsumrlimge0  26071  dvfsumrlim  26072  dvfsumrlim2  26073  pntpbnd1a  27629  pntpbnd2  27631  pntibndlem2  27635  pntibndlem3  27636  pntlemi  27648  pntlemo  27651  relowlssretop  37364  itg2addnclem2  37679  iblabsnclem  37690  ftc1anclem1  37700  ftc1anclem6  37705  rfcnpre1  45024  regt1loggt0  48457  rege1logbrege0  48479  rege1logbzge0  48480  io1ii  48818
  Copyright terms: Public domain W3C validator