MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil3 Structured version   Visualization version   GIF version

Theorem cfilucfil3 23933
Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
cfilucfil3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ 𝐶 ∈ (CauFil‘𝐷)))

Proof of Theorem cfilucfil3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetpsmet 22964 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 cfilucfil2 23177 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
32anbi2d 631 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))))
4 filfbas 22462 . . . . . . 7 (𝐶 ∈ (Fil‘𝑋) → 𝐶 ∈ (fBas‘𝑋))
54pm4.71i 563 . . . . . 6 (𝐶 ∈ (Fil‘𝑋) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)))
65anbi1i 626 . . . . 5 ((𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
7 anass 472 . . . . 5 (((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
86, 7bitr2i 279 . . . 4 ((𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
93, 8syl6bb 290 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
101, 9sylan2 595 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
11 iscfil 23878 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐶 ∈ (CauFil‘𝐷) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
1211adantl 485 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐶 ∈ (CauFil‘𝐷) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
1310, 12bitr4d 285 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ 𝐶 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2115  wne 3014  wral 3133  wrex 3134  wss 3919  c0 4276   × cxp 5541  cima 5546  cfv 6345  (class class class)co 7151  0cc0 10537  +crp 12388  [,)cico 12739  PsMetcpsmet 20084  ∞Metcxmet 20085  fBascfbas 20088  metUnifcmetu 20091  Filcfil 22459  CauFiluccfilu 22901  CauFilccfil 23865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7686  df-2nd 7687  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11699  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ico 12743  df-psmet 20092  df-xmet 20093  df-fbas 20097  df-fg 20098  df-metu 20099  df-fil 22460  df-ust 22815  df-cfilu 22902  df-cfil 23868
This theorem is referenced by:  cfilucfil4  23934
  Copyright terms: Public domain W3C validator