MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil3 Structured version   Visualization version   GIF version

Theorem cfilucfil3 25257
Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
cfilucfil3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ 𝐶 ∈ (CauFil‘𝐷)))

Proof of Theorem cfilucfil3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetpsmet 24272 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 cfilucfil2 24485 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
32anbi2d 630 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))))
4 filfbas 23771 . . . . . . 7 (𝐶 ∈ (Fil‘𝑋) → 𝐶 ∈ (fBas‘𝑋))
54pm4.71i 559 . . . . . 6 (𝐶 ∈ (Fil‘𝑋) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)))
65anbi1i 624 . . . . 5 ((𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
7 anass 468 . . . . 5 (((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
86, 7bitr2i 276 . . . 4 ((𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
93, 8bitrdi 287 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
101, 9sylan2 593 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
11 iscfil 25202 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐶 ∈ (CauFil‘𝐷) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
1211adantl 481 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐶 ∈ (CauFil‘𝐷) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
1310, 12bitr4d 282 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ 𝐶 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wne 2931  wral 3050  wrex 3059  wss 3924  c0 4306   × cxp 5649  cima 5654  cfv 6527  (class class class)co 7399  0cc0 11121  +crp 13000  [,)cico 13355  PsMetcpsmet 21284  ∞Metcxmet 21285  fBascfbas 21288  metUnifcmetu 21291  Filcfil 23768  CauFiluccfilu 24209  CauFilccfil 25189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-rp 13001  df-xneg 13120  df-xadd 13121  df-xmul 13122  df-ico 13359  df-psmet 21292  df-xmet 21293  df-fbas 21297  df-fg 21298  df-metu 21299  df-fil 23769  df-ust 24124  df-cfilu 24210  df-cfil 25192
This theorem is referenced by:  cfilucfil4  25258
  Copyright terms: Public domain W3C validator