MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil3 Structured version   Visualization version   GIF version

Theorem cfilucfil3 25220
Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
cfilucfil3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ 𝐶 ∈ (CauFil‘𝐷)))

Proof of Theorem cfilucfil3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetpsmet 24236 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 cfilucfil2 24449 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
32anbi2d 630 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))))
4 filfbas 23735 . . . . . . 7 (𝐶 ∈ (Fil‘𝑋) → 𝐶 ∈ (fBas‘𝑋))
54pm4.71i 559 . . . . . 6 (𝐶 ∈ (Fil‘𝑋) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)))
65anbi1i 624 . . . . 5 ((𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
7 anass 468 . . . . 5 (((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
86, 7bitr2i 276 . . . 4 ((𝐶 ∈ (Fil‘𝑋) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
93, 8bitrdi 287 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
101, 9sylan2 593 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
11 iscfil 25165 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐶 ∈ (CauFil‘𝐷) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
1211adantl 481 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐶 ∈ (CauFil‘𝐷) ↔ (𝐶 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
1310, 12bitr4d 282 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((𝐶 ∈ (Fil‘𝑋) ∧ 𝐶 ∈ (CauFilu‘(metUnif‘𝐷))) ↔ 𝐶 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   × cxp 5636  cima 5641  cfv 6511  (class class class)co 7387  0cc0 11068  +crp 12951  [,)cico 13308  PsMetcpsmet 21248  ∞Metcxmet 21249  fBascfbas 21252  metUnifcmetu 21255  Filcfil 23732  CauFiluccfilu 24173  CauFilccfil 25152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-psmet 21256  df-xmet 21257  df-fbas 21261  df-fg 21262  df-metu 21263  df-fil 23733  df-ust 24088  df-cfilu 24174  df-cfil 25155
This theorem is referenced by:  cfilucfil4  25221
  Copyright terms: Public domain W3C validator