![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfilucfil3 | Structured version Visualization version GIF version |
Description: Given a metric π· and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
cfilucfil3 | β’ ((π β β β§ π· β (βMetβπ)) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β πΆ β (CauFilβπ·))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetpsmet 23845 | . . 3 β’ (π· β (βMetβπ) β π· β (PsMetβπ)) | |
2 | cfilucfil2 24061 | . . . . 5 β’ ((π β β β§ π· β (PsMetβπ)) β (πΆ β (CauFiluβ(metUnifβπ·)) β (πΆ β (fBasβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) | |
3 | 2 | anbi2d 629 | . . . 4 β’ ((π β β β§ π· β (PsMetβπ)) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β (πΆ β (Filβπ) β§ (πΆ β (fBasβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯))))) |
4 | filfbas 23343 | . . . . . . 7 β’ (πΆ β (Filβπ) β πΆ β (fBasβπ)) | |
5 | 4 | pm4.71i 560 | . . . . . 6 β’ (πΆ β (Filβπ) β (πΆ β (Filβπ) β§ πΆ β (fBasβπ))) |
6 | 5 | anbi1i 624 | . . . . 5 β’ ((πΆ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)) β ((πΆ β (Filβπ) β§ πΆ β (fBasβπ)) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯))) |
7 | anass 469 | . . . . 5 β’ (((πΆ β (Filβπ) β§ πΆ β (fBasβπ)) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)) β (πΆ β (Filβπ) β§ (πΆ β (fBasβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) | |
8 | 6, 7 | bitr2i 275 | . . . 4 β’ ((πΆ β (Filβπ) β§ (πΆ β (fBasβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯))) β (πΆ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯))) |
9 | 3, 8 | bitrdi 286 | . . 3 β’ ((π β β β§ π· β (PsMetβπ)) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β (πΆ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) |
10 | 1, 9 | sylan2 593 | . 2 β’ ((π β β β§ π· β (βMetβπ)) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β (πΆ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) |
11 | iscfil 24773 | . . 3 β’ (π· β (βMetβπ) β (πΆ β (CauFilβπ·) β (πΆ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) | |
12 | 11 | adantl 482 | . 2 β’ ((π β β β§ π· β (βMetβπ)) β (πΆ β (CauFilβπ·) β (πΆ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΆ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) |
13 | 10, 12 | bitr4d 281 | 1 β’ ((π β β β§ π· β (βMetβπ)) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β πΆ β (CauFilβπ·))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 β wne 2940 βwral 3061 βwrex 3070 β wss 3947 β c0 4321 Γ cxp 5673 β cima 5678 βcfv 6540 (class class class)co 7405 0cc0 11106 β+crp 12970 [,)cico 13322 PsMetcpsmet 20920 βMetcxmet 20921 fBascfbas 20924 metUnifcmetu 20927 Filcfil 23340 CauFiluccfilu 23782 CauFilccfil 24760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ico 13326 df-psmet 20928 df-xmet 20929 df-fbas 20933 df-fg 20934 df-metu 20935 df-fil 23341 df-ust 23696 df-cfilu 23783 df-cfil 24763 |
This theorem is referenced by: cfilucfil4 24829 |
Copyright terms: Public domain | W3C validator |