Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicopnf | Structured version Visualization version GIF version |
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
elicopnf | ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10976 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | elico2 13088 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) |
4 | ltpnf 12801 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 < +∞) |
6 | 5 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) |
7 | df-3an 1087 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞)) |
9 | 3, 8 | bitr4di 288 | 1 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2107 class class class wbr 5075 (class class class)co 7260 ℝcr 10817 +∞cpnf 10953 ℝ*cxr 10955 < clt 10956 ≤ cle 10957 [,)cico 13026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-pre-lttri 10892 ax-pre-lttrn 10893 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-po 5499 df-so 5500 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-ov 7263 df-oprab 7264 df-mpo 7265 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-ico 13030 |
This theorem is referenced by: elrege0 13131 rexico 15009 limsupgle 15130 limsupgre 15134 rlim3 15151 ello12 15169 lo1bdd2 15177 elo12 15180 lo1resb 15217 rlimresb 15218 o1resb 15219 lo1eq 15221 rlimeq 15222 rlimsqzlem 15304 o1fsum 15469 ovolicopnf 24631 dvfsumrlimge0 25137 dvfsumrlim 25138 dvfsumrlim2 25139 cxp2lim 26069 chebbnd1 26563 chtppilimlem1 26564 chtppilimlem2 26565 chtppilim 26566 chebbnd2 26568 chto1lb 26569 chpchtlim 26570 chpo1ub 26571 vmadivsumb 26574 dchrisumlema 26579 dchrisumlem2 26581 dchrisumlem3 26582 dchrmusumlema 26584 dchrmusum2 26585 dchrvmasumlem2 26589 dchrvmasumiflem1 26592 dchrisum0lema 26605 dchrisum0lem1b 26606 dchrisum0lem2a 26608 dchrisum0lem2 26609 2vmadivsumlem 26631 selbergb 26640 selberg2b 26643 chpdifbndlem1 26644 selberg3lem1 26648 selberg3lem2 26649 selberg4lem1 26651 pntrsumo1 26656 selbergsb 26666 pntrlog2bndlem3 26670 pntpbnd1 26677 pntpbnd2 26678 pntibndlem3 26683 pntlemn 26691 pntlem3 26700 pntleml 26702 pnt2 26704 uzssico 31047 itg2addnclem2 35798 2xp3dxp2ge1d 40132 elbigo2 45828 rege1logbrege0 45834 blennnelnn 45852 dignnld 45879 |
Copyright terms: Public domain | W3C validator |