MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicopnf Structured version   Visualization version   GIF version

Theorem elicopnf 13462
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
elicopnf (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))

Proof of Theorem elicopnf
StepHypRef Expression
1 pnfxr 11289 . . 3 +∞ ∈ ℝ*
2 elico2 13427 . . 3 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
31, 2mpan2 691 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
4 ltpnf 13136 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
54adantr 480 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 < +∞)
65pm4.71i 559 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
7 df-3an 1088 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
86, 7bitr4i 278 . 2 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞))
93, 8bitr4di 289 1 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7405  cr 11128  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  [,)cico 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368
This theorem is referenced by:  elrege0  13471  rexico  15372  limsupgle  15493  limsupgre  15497  rlim3  15514  ello12  15532  lo1bdd2  15540  elo12  15543  lo1resb  15580  rlimresb  15581  o1resb  15582  lo1eq  15584  rlimeq  15585  rlimsqzlem  15665  o1fsum  15829  ovolicopnf  25477  dvfsumrlimge0  25989  dvfsumrlim  25990  dvfsumrlim2  25991  cxp2lim  26939  chebbnd1  27435  chtppilimlem1  27436  chtppilimlem2  27437  chtppilim  27438  chebbnd2  27440  chto1lb  27441  chpchtlim  27442  chpo1ub  27443  vmadivsumb  27446  dchrisumlema  27451  dchrisumlem2  27453  dchrisumlem3  27454  dchrmusumlema  27456  dchrmusum2  27457  dchrvmasumlem2  27461  dchrvmasumiflem1  27464  dchrisum0lema  27477  dchrisum0lem1b  27478  dchrisum0lem2a  27480  dchrisum0lem2  27481  2vmadivsumlem  27503  selbergb  27512  selberg2b  27515  chpdifbndlem1  27516  selberg3lem1  27520  selberg3lem2  27521  selberg4lem1  27523  pntrsumo1  27528  selbergsb  27538  pntrlog2bndlem3  27542  pntpbnd1  27549  pntpbnd2  27550  pntibndlem3  27555  pntlemn  27563  pntlem3  27572  pntleml  27574  pnt2  27576  uzssico  32761  itg2addnclem2  37696  2xp3dxp2ge1d  42254  ceilhalfnn  47365  elbigo2  48532  rege1logbrege0  48538  blennnelnn  48556  dignnld  48583
  Copyright terms: Public domain W3C validator