MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicopnf Structured version   Visualization version   GIF version

Theorem elicopnf 13413
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
elicopnf (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))

Proof of Theorem elicopnf
StepHypRef Expression
1 pnfxr 11235 . . 3 +∞ ∈ ℝ*
2 elico2 13378 . . 3 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
31, 2mpan2 691 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
4 ltpnf 13087 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
54adantr 480 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 < +∞)
65pm4.71i 559 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
7 df-3an 1088 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
86, 7bitr4i 278 . 2 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞))
93, 8bitr4di 289 1 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  [,)cico 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319
This theorem is referenced by:  elrege0  13422  rexico  15327  limsupgle  15450  limsupgre  15454  rlim3  15471  ello12  15489  lo1bdd2  15497  elo12  15500  lo1resb  15537  rlimresb  15538  o1resb  15539  lo1eq  15541  rlimeq  15542  rlimsqzlem  15622  o1fsum  15786  ovolicopnf  25432  dvfsumrlimge0  25944  dvfsumrlim  25945  dvfsumrlim2  25946  cxp2lim  26894  chebbnd1  27390  chtppilimlem1  27391  chtppilimlem2  27392  chtppilim  27393  chebbnd2  27395  chto1lb  27396  chpchtlim  27397  chpo1ub  27398  vmadivsumb  27401  dchrisumlema  27406  dchrisumlem2  27408  dchrisumlem3  27409  dchrmusumlema  27411  dchrmusum2  27412  dchrvmasumlem2  27416  dchrvmasumiflem1  27419  dchrisum0lema  27432  dchrisum0lem1b  27433  dchrisum0lem2a  27435  dchrisum0lem2  27436  2vmadivsumlem  27458  selbergb  27467  selberg2b  27470  chpdifbndlem1  27471  selberg3lem1  27475  selberg3lem2  27476  selberg4lem1  27478  pntrsumo1  27483  selbergsb  27493  pntrlog2bndlem3  27497  pntpbnd1  27504  pntpbnd2  27505  pntibndlem3  27510  pntlemn  27518  pntlem3  27527  pntleml  27529  pnt2  27531  uzssico  32714  itg2addnclem2  37673  ceilhalfnn  47341  elbigo2  48545  rege1logbrege0  48551  blennnelnn  48569  dignnld  48596
  Copyright terms: Public domain W3C validator