| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicopnf | Structured version Visualization version GIF version | ||
| Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| elicopnf | ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11166 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | elico2 13310 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) |
| 4 | ltpnf 13019 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 < +∞) |
| 6 | 5 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) |
| 7 | df-3an 1088 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞)) |
| 9 | 3, 8 | bitr4di 289 | 1 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 |
| This theorem is referenced by: elrege0 13354 rexico 15261 limsupgle 15384 limsupgre 15388 rlim3 15405 ello12 15423 lo1bdd2 15431 elo12 15434 lo1resb 15471 rlimresb 15472 o1resb 15473 lo1eq 15475 rlimeq 15476 rlimsqzlem 15556 o1fsum 15720 ovolicopnf 25452 dvfsumrlimge0 25964 dvfsumrlim 25965 dvfsumrlim2 25966 cxp2lim 26914 chebbnd1 27410 chtppilimlem1 27411 chtppilimlem2 27412 chtppilim 27413 chebbnd2 27415 chto1lb 27416 chpchtlim 27417 chpo1ub 27418 vmadivsumb 27421 dchrisumlema 27426 dchrisumlem2 27428 dchrisumlem3 27429 dchrmusumlema 27431 dchrmusum2 27432 dchrvmasumlem2 27436 dchrvmasumiflem1 27439 dchrisum0lema 27452 dchrisum0lem1b 27453 dchrisum0lem2a 27455 dchrisum0lem2 27456 2vmadivsumlem 27478 selbergb 27487 selberg2b 27490 chpdifbndlem1 27491 selberg3lem1 27495 selberg3lem2 27496 selberg4lem1 27498 pntrsumo1 27503 selbergsb 27513 pntrlog2bndlem3 27517 pntpbnd1 27524 pntpbnd2 27525 pntibndlem3 27530 pntlemn 27538 pntlem3 27547 pntleml 27549 pnt2 27551 uzssico 32767 itg2addnclem2 37711 ceilhalfnn 47435 elbigo2 48652 rege1logbrege0 48658 blennnelnn 48676 dignnld 48703 |
| Copyright terms: Public domain | W3C validator |