| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicopnf | Structured version Visualization version GIF version | ||
| Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| elicopnf | ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11169 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | elico2 13313 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) |
| 4 | ltpnf 13022 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 < +∞) |
| 6 | 5 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) |
| 7 | df-3an 1088 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞)) |
| 9 | 3, 8 | bitr4di 289 | 1 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 [,)cico 13250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ico 13254 |
| This theorem is referenced by: elrege0 13357 rexico 15261 limsupgle 15384 limsupgre 15388 rlim3 15405 ello12 15423 lo1bdd2 15431 elo12 15434 lo1resb 15471 rlimresb 15472 o1resb 15473 lo1eq 15475 rlimeq 15476 rlimsqzlem 15556 o1fsum 15720 ovolicopnf 25423 dvfsumrlimge0 25935 dvfsumrlim 25936 dvfsumrlim2 25937 cxp2lim 26885 chebbnd1 27381 chtppilimlem1 27382 chtppilimlem2 27383 chtppilim 27384 chebbnd2 27386 chto1lb 27387 chpchtlim 27388 chpo1ub 27389 vmadivsumb 27392 dchrisumlema 27397 dchrisumlem2 27399 dchrisumlem3 27400 dchrmusumlema 27402 dchrmusum2 27403 dchrvmasumlem2 27407 dchrvmasumiflem1 27410 dchrisum0lema 27423 dchrisum0lem1b 27424 dchrisum0lem2a 27426 dchrisum0lem2 27427 2vmadivsumlem 27449 selbergb 27458 selberg2b 27461 chpdifbndlem1 27462 selberg3lem1 27466 selberg3lem2 27467 selberg4lem1 27469 pntrsumo1 27474 selbergsb 27484 pntrlog2bndlem3 27488 pntpbnd1 27495 pntpbnd2 27496 pntibndlem3 27501 pntlemn 27509 pntlem3 27518 pntleml 27520 pnt2 27522 uzssico 32728 itg2addnclem2 37662 ceilhalfnn 47330 elbigo2 48547 rege1logbrege0 48553 blennnelnn 48571 dignnld 48598 |
| Copyright terms: Public domain | W3C validator |