![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicopnf | Structured version Visualization version GIF version |
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
elicopnf | ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11272 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | elico2 13392 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) |
4 | ltpnf 13104 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
5 | 4 | adantr 479 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 < +∞) |
6 | 5 | pm4.71i 558 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) |
7 | df-3an 1087 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞)) |
9 | 3, 8 | bitr4di 288 | 1 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 ℝcr 11111 +∞cpnf 11249 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 [,)cico 13330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ico 13334 |
This theorem is referenced by: elrege0 13435 rexico 15304 limsupgle 15425 limsupgre 15429 rlim3 15446 ello12 15464 lo1bdd2 15472 elo12 15475 lo1resb 15512 rlimresb 15513 o1resb 15514 lo1eq 15516 rlimeq 15517 rlimsqzlem 15599 o1fsum 15763 ovolicopnf 25273 dvfsumrlimge0 25782 dvfsumrlim 25783 dvfsumrlim2 25784 cxp2lim 26717 chebbnd1 27211 chtppilimlem1 27212 chtppilimlem2 27213 chtppilim 27214 chebbnd2 27216 chto1lb 27217 chpchtlim 27218 chpo1ub 27219 vmadivsumb 27222 dchrisumlema 27227 dchrisumlem2 27229 dchrisumlem3 27230 dchrmusumlema 27232 dchrmusum2 27233 dchrvmasumlem2 27237 dchrvmasumiflem1 27240 dchrisum0lema 27253 dchrisum0lem1b 27254 dchrisum0lem2a 27256 dchrisum0lem2 27257 2vmadivsumlem 27279 selbergb 27288 selberg2b 27291 chpdifbndlem1 27292 selberg3lem1 27296 selberg3lem2 27297 selberg4lem1 27299 pntrsumo1 27304 selbergsb 27314 pntrlog2bndlem3 27318 pntpbnd1 27325 pntpbnd2 27326 pntibndlem3 27331 pntlemn 27339 pntlem3 27348 pntleml 27350 pnt2 27352 uzssico 32262 itg2addnclem2 36843 2xp3dxp2ge1d 41328 elbigo2 47325 rege1logbrege0 47331 blennnelnn 47349 dignnld 47376 |
Copyright terms: Public domain | W3C validator |