| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicopnf | Structured version Visualization version GIF version | ||
| Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| elicopnf | ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11289 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | elico2 13427 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) |
| 4 | ltpnf 13136 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 < +∞) |
| 6 | 5 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) |
| 7 | df-3an 1088 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞)) |
| 9 | 3, 8 | bitr4di 289 | 1 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 [,)cico 13364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ico 13368 |
| This theorem is referenced by: elrege0 13471 rexico 15372 limsupgle 15493 limsupgre 15497 rlim3 15514 ello12 15532 lo1bdd2 15540 elo12 15543 lo1resb 15580 rlimresb 15581 o1resb 15582 lo1eq 15584 rlimeq 15585 rlimsqzlem 15665 o1fsum 15829 ovolicopnf 25477 dvfsumrlimge0 25989 dvfsumrlim 25990 dvfsumrlim2 25991 cxp2lim 26939 chebbnd1 27435 chtppilimlem1 27436 chtppilimlem2 27437 chtppilim 27438 chebbnd2 27440 chto1lb 27441 chpchtlim 27442 chpo1ub 27443 vmadivsumb 27446 dchrisumlema 27451 dchrisumlem2 27453 dchrisumlem3 27454 dchrmusumlema 27456 dchrmusum2 27457 dchrvmasumlem2 27461 dchrvmasumiflem1 27464 dchrisum0lema 27477 dchrisum0lem1b 27478 dchrisum0lem2a 27480 dchrisum0lem2 27481 2vmadivsumlem 27503 selbergb 27512 selberg2b 27515 chpdifbndlem1 27516 selberg3lem1 27520 selberg3lem2 27521 selberg4lem1 27523 pntrsumo1 27528 selbergsb 27538 pntrlog2bndlem3 27542 pntpbnd1 27549 pntpbnd2 27550 pntibndlem3 27555 pntlemn 27563 pntlem3 27572 pntleml 27574 pnt2 27576 uzssico 32761 itg2addnclem2 37696 2xp3dxp2ge1d 42254 ceilhalfnn 47365 elbigo2 48532 rege1logbrege0 48538 blennnelnn 48556 dignnld 48583 |
| Copyright terms: Public domain | W3C validator |