![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicopnf | Structured version Visualization version GIF version |
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
elicopnf | ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11292 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | elico2 13414 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) |
4 | ltpnf 13126 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 < +∞) |
6 | 5 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) |
7 | df-3an 1087 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞)) |
9 | 3, 8 | bitr4di 289 | 1 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 ℝcr 11131 +∞cpnf 11269 ℝ*cxr 11271 < clt 11272 ≤ cle 11273 [,)cico 13352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-pre-lttri 11206 ax-pre-lttrn 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-ico 13356 |
This theorem is referenced by: elrege0 13457 rexico 15326 limsupgle 15447 limsupgre 15451 rlim3 15468 ello12 15486 lo1bdd2 15494 elo12 15497 lo1resb 15534 rlimresb 15535 o1resb 15536 lo1eq 15538 rlimeq 15539 rlimsqzlem 15621 o1fsum 15785 ovolicopnf 25446 dvfsumrlimge0 25958 dvfsumrlim 25959 dvfsumrlim2 25960 cxp2lim 26902 chebbnd1 27398 chtppilimlem1 27399 chtppilimlem2 27400 chtppilim 27401 chebbnd2 27403 chto1lb 27404 chpchtlim 27405 chpo1ub 27406 vmadivsumb 27409 dchrisumlema 27414 dchrisumlem2 27416 dchrisumlem3 27417 dchrmusumlema 27419 dchrmusum2 27420 dchrvmasumlem2 27424 dchrvmasumiflem1 27427 dchrisum0lema 27440 dchrisum0lem1b 27441 dchrisum0lem2a 27443 dchrisum0lem2 27444 2vmadivsumlem 27466 selbergb 27475 selberg2b 27478 chpdifbndlem1 27479 selberg3lem1 27483 selberg3lem2 27484 selberg4lem1 27486 pntrsumo1 27491 selbergsb 27501 pntrlog2bndlem3 27505 pntpbnd1 27512 pntpbnd2 27513 pntibndlem3 27518 pntlemn 27526 pntlem3 27535 pntleml 27537 pnt2 27539 uzssico 32546 itg2addnclem2 37139 2xp3dxp2ge1d 41687 elbigo2 47619 rege1logbrege0 47625 blennnelnn 47643 dignnld 47670 |
Copyright terms: Public domain | W3C validator |