Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicopnf | Structured version Visualization version GIF version |
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
elicopnf | ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11013 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | elico2 13125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞))) |
4 | ltpnf 12838 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 < +∞) |
6 | 5 | pm4.71i 559 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) |
7 | df-3an 1087 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝐵 < +∞)) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞)) |
9 | 3, 8 | bitr4di 288 | 1 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 +∞cpnf 10990 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 [,)cico 13063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-ico 13067 |
This theorem is referenced by: elrege0 13168 rexico 15046 limsupgle 15167 limsupgre 15171 rlim3 15188 ello12 15206 lo1bdd2 15214 elo12 15217 lo1resb 15254 rlimresb 15255 o1resb 15256 lo1eq 15258 rlimeq 15259 rlimsqzlem 15341 o1fsum 15506 ovolicopnf 24669 dvfsumrlimge0 25175 dvfsumrlim 25176 dvfsumrlim2 25177 cxp2lim 26107 chebbnd1 26601 chtppilimlem1 26602 chtppilimlem2 26603 chtppilim 26604 chebbnd2 26606 chto1lb 26607 chpchtlim 26608 chpo1ub 26609 vmadivsumb 26612 dchrisumlema 26617 dchrisumlem2 26619 dchrisumlem3 26620 dchrmusumlema 26622 dchrmusum2 26623 dchrvmasumlem2 26627 dchrvmasumiflem1 26630 dchrisum0lema 26643 dchrisum0lem1b 26644 dchrisum0lem2a 26646 dchrisum0lem2 26647 2vmadivsumlem 26669 selbergb 26678 selberg2b 26681 chpdifbndlem1 26682 selberg3lem1 26686 selberg3lem2 26687 selberg4lem1 26689 pntrsumo1 26694 selbergsb 26704 pntrlog2bndlem3 26708 pntpbnd1 26715 pntpbnd2 26716 pntibndlem3 26721 pntlemn 26729 pntlem3 26738 pntleml 26740 pnt2 26742 uzssico 31084 itg2addnclem2 35808 2xp3dxp2ge1d 40142 elbigo2 45850 rege1logbrege0 45856 blennnelnn 45874 dignnld 45901 |
Copyright terms: Public domain | W3C validator |