Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrp2 Structured version   Visualization version   GIF version

Theorem dfrp2 29981
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
Assertion
Ref Expression
dfrp2 + = (0(,)+∞)

Proof of Theorem dfrp2
StepHypRef Expression
1 ltpnf 12154 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 < +∞)
21adantr 472 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞)
32pm4.71i 555 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
4 df-3an 1109 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
53, 4bitr4i 269 . . 3 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
6 elrp 12030 . . 3 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
7 0xr 10340 . . . 4 0 ∈ ℝ*
8 pnfxr 10346 . . . 4 +∞ ∈ ℝ*
9 elioo2 12418 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞)))
107, 8, 9mp2an 683 . . 3 (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
115, 6, 103bitr4i 294 . 2 (𝑥 ∈ ℝ+𝑥 ∈ (0(,)+∞))
1211eqriv 2762 1 + = (0(,)+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4809  (class class class)co 6842  cr 10188  0cc0 10189  +∞cpnf 10325  *cxr 10327   < clt 10328  +crp 12028  (,)cioo 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-addrcl 10250  ax-rnegex 10260  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-rp 12029  df-ioo 12381
This theorem is referenced by:  omssubadd  30809
  Copyright terms: Public domain W3C validator