Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfrp2 | Structured version Visualization version GIF version |
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
Ref | Expression |
---|---|
dfrp2 | ⊢ ℝ+ = (0(,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltpnf 12591 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
2 | 1 | adantr 484 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞) |
3 | 2 | pm4.71i 563 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) |
4 | df-3an 1090 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) | |
5 | 3, 4 | bitr4i 281 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
6 | elrp 12467 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
7 | 0xr 10759 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | pnfxr 10766 | . . . 4 ⊢ +∞ ∈ ℝ* | |
9 | elioo2 12855 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞))) | |
10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
11 | 5, 6, 10 | 3bitr4i 306 | . 2 ⊢ (𝑥 ∈ ℝ+ ↔ 𝑥 ∈ (0(,)+∞)) |
12 | 11 | eqriv 2735 | 1 ⊢ ℝ+ = (0(,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 class class class wbr 5027 (class class class)co 7164 ℝcr 10607 0cc0 10608 +∞cpnf 10743 ℝ*cxr 10745 < clt 10746 ℝ+crp 12465 (,)cioo 12814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-addrcl 10669 ax-rnegex 10679 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-1st 7707 df-2nd 7708 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-rp 12466 df-ioo 12818 |
This theorem is referenced by: omssubadd 31829 aks4d1p1p6 39689 |
Copyright terms: Public domain | W3C validator |