Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrp2 Structured version   Visualization version   GIF version

Theorem dfrp2 30179
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
Assertion
Ref Expression
dfrp2 + = (0(,)+∞)

Proof of Theorem dfrp2
StepHypRef Expression
1 ltpnf 12365 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 < +∞)
21adantr 481 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞)
32pm4.71i 560 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
4 df-3an 1082 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
53, 4bitr4i 279 . . 3 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
6 elrp 12241 . . 3 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
7 0xr 10534 . . . 4 0 ∈ ℝ*
8 pnfxr 10541 . . . 4 +∞ ∈ ℝ*
9 elioo2 12629 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞)))
107, 8, 9mp2an 688 . . 3 (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
115, 6, 103bitr4i 304 . 2 (𝑥 ∈ ℝ+𝑥 ∈ (0(,)+∞))
1211eqriv 2792 1 + = (0(,)+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081   class class class wbr 4962  (class class class)co 7016  cr 10382  0cc0 10383  +∞cpnf 10518  *cxr 10520   < clt 10521  +crp 12239  (,)cioo 12588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-addrcl 10444  ax-rnegex 10454  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-rp 12240  df-ioo 12592
This theorem is referenced by:  omssubadd  31175
  Copyright terms: Public domain W3C validator