![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrp2 | Structured version Visualization version GIF version |
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
Ref | Expression |
---|---|
dfrp2 | ⊢ ℝ+ = (0(,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltpnf 13183 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞) |
3 | 2 | pm4.71i 559 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) |
4 | df-3an 1089 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) | |
5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
6 | elrp 13059 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
7 | 0xr 11337 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | pnfxr 11344 | . . . 4 ⊢ +∞ ∈ ℝ* | |
9 | elioo2 13448 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞))) | |
10 | 7, 8, 9 | mp2an 691 | . . 3 ⊢ (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
11 | 5, 6, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ℝ+ ↔ 𝑥 ∈ (0(,)+∞)) |
12 | 11 | eqriv 2737 | 1 ⊢ ℝ+ = (0(,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ℝ+crp 13057 (,)cioo 13407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-rp 13058 df-ioo 13411 |
This theorem is referenced by: omssubadd 34265 aks4d1p1p6 42030 |
Copyright terms: Public domain | W3C validator |