MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrp2 Structured version   Visualization version   GIF version

Theorem dfrp2 13409
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
Assertion
Ref Expression
dfrp2 + = (0(,)+∞)

Proof of Theorem dfrp2
StepHypRef Expression
1 ltpnf 13134 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 < +∞)
21adantr 480 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞)
32pm4.71i 559 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
4 df-3an 1088 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
53, 4bitr4i 278 . . 3 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
6 elrp 13008 . . 3 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
7 0xr 11280 . . . 4 0 ∈ ℝ*
8 pnfxr 11287 . . . 4 +∞ ∈ ℝ*
9 elioo2 13401 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞)))
107, 8, 9mp2an 692 . . 3 (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
115, 6, 103bitr4i 303 . 2 (𝑥 ∈ ℝ+𝑥 ∈ (0(,)+∞))
1211eqriv 2732 1 + = (0(,)+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  (class class class)co 7403  cr 11126  0cc0 11127  +∞cpnf 11264  *cxr 11266   < clt 11267  +crp 13006  (,)cioo 13360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-addrcl 11188  ax-rnegex 11198  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-rp 13007  df-ioo 13364
This theorem is referenced by:  omssubadd  34278  aks4d1p1p6  42032  readvrec2  42351  readvrec  42352
  Copyright terms: Public domain W3C validator