Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofelvv Structured version   Visualization version   GIF version

Theorem prcofelvv 49491
Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
prcofelvv.f (𝜑𝐹𝑈)
prcofelvv.p (𝜑𝑃𝑉)
Assertion
Ref Expression
prcofelvv (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))

Proof of Theorem prcofelvv
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
2 eqid 2731 . . 3 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
3 prcofelvv.f . . 3 (𝜑𝐹𝑈)
4 prcofelvv.p . . 3 (𝜑𝑃𝑉)
5 eqidd 2732 . . 3 (𝜑 → (1st𝑃) = (1st𝑃))
6 eqidd 2732 . . 3 (𝜑 → (2nd𝑃) = (2nd𝑃))
71, 2, 3, 4, 5, 6prcofvalg 49487 . 2 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
8 ovex 7379 . . . 4 ((1st𝑃) Func (2nd𝑃)) ∈ V
98mptex 7157 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
108, 8mpoex 8011 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
119, 10opelvv 5654 . 2 ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ (V × V)
127, 11eqeltrdi 2839 1 (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cop 4579  cmpt 5170   × cxp 5612  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-prcof 49485
This theorem is referenced by:  relran  49735  ranval3  49742  ranrcl4lem  49749  ranup  49753
  Copyright terms: Public domain W3C validator