| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcofelvv | Structured version Visualization version GIF version | ||
| Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcofelvv.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| prcofelvv.p | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| prcofelvv | ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) = ((1st ‘𝑃) Func (2nd ‘𝑃)) | |
| 2 | eqid 2730 | . . 3 ⊢ ((1st ‘𝑃) Nat (2nd ‘𝑃)) = ((1st ‘𝑃) Nat (2nd ‘𝑃)) | |
| 3 | prcofelvv.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 4 | prcofelvv.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
| 5 | eqidd 2731 | . . 3 ⊢ (𝜑 → (1st ‘𝑃) = (1st ‘𝑃)) | |
| 6 | eqidd 2731 | . . 3 ⊢ (𝜑 → (2nd ‘𝑃) = (2nd ‘𝑃)) | |
| 7 | 1, 2, 3, 4, 5, 6 | prcofvalg 49355 | . 2 ⊢ (𝜑 → (𝑃 −∘F 𝐹) = 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 8 | ovex 7422 | . . . 4 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) ∈ V | |
| 9 | 8 | mptex 7199 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)) ∈ V |
| 10 | 8, 8 | mpoex 8060 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) ∈ V |
| 11 | 9, 10 | opelvv 5680 | . 2 ⊢ 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 ∈ (V × V) |
| 12 | 7, 11 | eqeltrdi 2837 | 1 ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 〈cop 4597 ↦ cmpt 5190 × cxp 5638 ∘ ccom 5644 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 1st c1st 7968 2nd c2nd 7969 Func cfunc 17822 ∘func ccofu 17824 Nat cnat 17912 −∘F cprcof 49352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-prcof 49353 |
| This theorem is referenced by: relran 49603 ranval3 49610 ranrcl4lem 49617 ranup 49621 |
| Copyright terms: Public domain | W3C validator |