Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofelvv Structured version   Visualization version   GIF version

Theorem prcofelvv 49362
Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
prcofelvv.f (𝜑𝐹𝑈)
prcofelvv.p (𝜑𝑃𝑉)
Assertion
Ref Expression
prcofelvv (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))

Proof of Theorem prcofelvv
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
2 eqid 2729 . . 3 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
3 prcofelvv.f . . 3 (𝜑𝐹𝑈)
4 prcofelvv.p . . 3 (𝜑𝑃𝑉)
5 eqidd 2730 . . 3 (𝜑 → (1st𝑃) = (1st𝑃))
6 eqidd 2730 . . 3 (𝜑 → (2nd𝑃) = (2nd𝑃))
71, 2, 3, 4, 5, 6prcofvalg 49358 . 2 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
8 ovex 7402 . . . 4 ((1st𝑃) Func (2nd𝑃)) ∈ V
98mptex 7179 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
108, 8mpoex 8037 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
119, 10opelvv 5671 . 2 ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ (V × V)
127, 11eqeltrdi 2836 1 (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3444  cop 4591  cmpt 5183   × cxp 5629  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946   Func cfunc 17796  func ccofu 17798   Nat cnat 17886   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-prcof 49356
This theorem is referenced by:  relran  49606  ranval3  49613  ranrcl4lem  49620  ranup  49624
  Copyright terms: Public domain W3C validator