| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcofelvv | Structured version Visualization version GIF version | ||
| Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcofelvv.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| prcofelvv.p | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| prcofelvv | ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) = ((1st ‘𝑃) Func (2nd ‘𝑃)) | |
| 2 | eqid 2731 | . . 3 ⊢ ((1st ‘𝑃) Nat (2nd ‘𝑃)) = ((1st ‘𝑃) Nat (2nd ‘𝑃)) | |
| 3 | prcofelvv.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 4 | prcofelvv.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
| 5 | eqidd 2732 | . . 3 ⊢ (𝜑 → (1st ‘𝑃) = (1st ‘𝑃)) | |
| 6 | eqidd 2732 | . . 3 ⊢ (𝜑 → (2nd ‘𝑃) = (2nd ‘𝑃)) | |
| 7 | 1, 2, 3, 4, 5, 6 | prcofvalg 49487 | . 2 ⊢ (𝜑 → (𝑃 −∘F 𝐹) = 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 8 | ovex 7379 | . . . 4 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) ∈ V | |
| 9 | 8 | mptex 7157 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)) ∈ V |
| 10 | 8, 8 | mpoex 8011 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) ∈ V |
| 11 | 9, 10 | opelvv 5654 | . 2 ⊢ 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 ∈ (V × V) |
| 12 | 7, 11 | eqeltrdi 2839 | 1 ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ↦ cmpt 5170 × cxp 5612 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Func cfunc 17761 ∘func ccofu 17763 Nat cnat 17851 −∘F cprcof 49484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-prcof 49485 |
| This theorem is referenced by: relran 49735 ranval3 49742 ranrcl4lem 49749 ranup 49753 |
| Copyright terms: Public domain | W3C validator |