Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofelvv Structured version   Visualization version   GIF version

Theorem prcofelvv 49375
Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
prcofelvv.f (𝜑𝐹𝑈)
prcofelvv.p (𝜑𝑃𝑉)
Assertion
Ref Expression
prcofelvv (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))

Proof of Theorem prcofelvv
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
2 eqid 2729 . . 3 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
3 prcofelvv.f . . 3 (𝜑𝐹𝑈)
4 prcofelvv.p . . 3 (𝜑𝑃𝑉)
5 eqidd 2730 . . 3 (𝜑 → (1st𝑃) = (1st𝑃))
6 eqidd 2730 . . 3 (𝜑 → (2nd𝑃) = (2nd𝑃))
71, 2, 3, 4, 5, 6prcofvalg 49371 . 2 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
8 ovex 7382 . . . 4 ((1st𝑃) Func (2nd𝑃)) ∈ V
98mptex 7159 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
108, 8mpoex 8014 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
119, 10opelvv 5659 . 2 ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ (V × V)
127, 11eqeltrdi 2836 1 (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3436  cop 4583  cmpt 5173   × cxp 5617  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-prcof 49369
This theorem is referenced by:  relran  49619  ranval3  49626  ranrcl4lem  49633  ranup  49637
  Copyright terms: Public domain W3C validator