| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcofelvv | Structured version Visualization version GIF version | ||
| Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcofelvv.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| prcofelvv.p | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| prcofelvv | ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) = ((1st ‘𝑃) Func (2nd ‘𝑃)) | |
| 2 | eqid 2734 | . . 3 ⊢ ((1st ‘𝑃) Nat (2nd ‘𝑃)) = ((1st ‘𝑃) Nat (2nd ‘𝑃)) | |
| 3 | prcofelvv.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 4 | prcofelvv.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
| 5 | eqidd 2735 | . . 3 ⊢ (𝜑 → (1st ‘𝑃) = (1st ‘𝑃)) | |
| 6 | eqidd 2735 | . . 3 ⊢ (𝜑 → (2nd ‘𝑃) = (2nd ‘𝑃)) | |
| 7 | 1, 2, 3, 4, 5, 6 | prcofvalg 49150 | . 2 ⊢ (𝜑 → (𝑃 −∘F 𝐹) = 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 8 | ovex 7433 | . . . 4 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) ∈ V | |
| 9 | 8 | mptex 7212 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)) ∈ V |
| 10 | 8, 8 | mpoex 8073 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) ∈ V |
| 11 | 9, 10 | opelvv 5692 | . 2 ⊢ 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 ∈ (V × V) |
| 12 | 7, 11 | eqeltrdi 2841 | 1 ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3457 〈cop 4605 ↦ cmpt 5199 × cxp 5650 ∘ ccom 5656 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 1st c1st 7981 2nd c2nd 7982 Func cfunc 17854 ∘func ccofu 17856 Nat cnat 17944 −∘F cprcof 49147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-prcof 49148 |
| This theorem is referenced by: relran 49360 ranrcl4lem 49373 ranup 49377 |
| Copyright terms: Public domain | W3C validator |