Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofelvv Structured version   Visualization version   GIF version

Theorem prcofelvv 49153
Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
prcofelvv.f (𝜑𝐹𝑈)
prcofelvv.p (𝜑𝑃𝑉)
Assertion
Ref Expression
prcofelvv (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))

Proof of Theorem prcofelvv
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
2 eqid 2734 . . 3 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
3 prcofelvv.f . . 3 (𝜑𝐹𝑈)
4 prcofelvv.p . . 3 (𝜑𝑃𝑉)
5 eqidd 2735 . . 3 (𝜑 → (1st𝑃) = (1st𝑃))
6 eqidd 2735 . . 3 (𝜑 → (2nd𝑃) = (2nd𝑃))
71, 2, 3, 4, 5, 6prcofvalg 49150 . 2 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
8 ovex 7433 . . . 4 ((1st𝑃) Func (2nd𝑃)) ∈ V
98mptex 7212 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
108, 8mpoex 8073 . . 3 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
119, 10opelvv 5692 . 2 ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ (V × V)
127, 11eqeltrdi 2841 1 (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3457  cop 4605  cmpt 5199   × cxp 5650  ccom 5656  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854  func ccofu 17856   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-prcof 49148
This theorem is referenced by:  relran  49360  ranrcl4lem  49373  ranup  49377
  Copyright terms: Public domain W3C validator