| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcofelvv | Structured version Visualization version GIF version | ||
| Description: The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcofelvv.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| prcofelvv.p | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| prcofelvv | ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) = ((1st ‘𝑃) Func (2nd ‘𝑃)) | |
| 2 | eqid 2729 | . . 3 ⊢ ((1st ‘𝑃) Nat (2nd ‘𝑃)) = ((1st ‘𝑃) Nat (2nd ‘𝑃)) | |
| 3 | prcofelvv.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 4 | prcofelvv.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
| 5 | eqidd 2730 | . . 3 ⊢ (𝜑 → (1st ‘𝑃) = (1st ‘𝑃)) | |
| 6 | eqidd 2730 | . . 3 ⊢ (𝜑 → (2nd ‘𝑃) = (2nd ‘𝑃)) | |
| 7 | 1, 2, 3, 4, 5, 6 | prcofvalg 49358 | . 2 ⊢ (𝜑 → (𝑃 −∘F 𝐹) = 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 8 | ovex 7402 | . . . 4 ⊢ ((1st ‘𝑃) Func (2nd ‘𝑃)) ∈ V | |
| 9 | 8 | mptex 7179 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)) ∈ V |
| 10 | 8, 8 | mpoex 8037 | . . 3 ⊢ (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) ∈ V |
| 11 | 9, 10 | opelvv 5671 | . 2 ⊢ 〈(𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)), 𝑙 ∈ ((1st ‘𝑃) Func (2nd ‘𝑃)) ↦ (𝑎 ∈ (𝑘((1st ‘𝑃) Nat (2nd ‘𝑃))𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 ∈ (V × V) |
| 12 | 7, 11 | eqeltrdi 2836 | 1 ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 〈cop 4591 ↦ cmpt 5183 × cxp 5629 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 Func cfunc 17796 ∘func ccofu 17798 Nat cnat 17886 −∘F cprcof 49355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-prcof 49356 |
| This theorem is referenced by: relran 49606 ranval3 49613 ranrcl4lem 49620 ranup 49624 |
| Copyright terms: Public domain | W3C validator |