Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probnul Structured version   Visualization version   GIF version

Theorem probnul 34451
Description: The probability of the empty event set is 0. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probnul (𝑃 ∈ Prob → (𝑃‘∅) = 0)

Proof of Theorem probnul
StepHypRef Expression
1 domprobmeas 34447 . 2 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
2 measvnul 34242 . 2 (𝑃 ∈ (measures‘dom 𝑃) → (𝑃‘∅) = 0)
31, 2syl 17 1 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4313  dom cdm 5659  cfv 6536  0cc0 11134  measurescmeas 34231  Probcprb 34444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-esum 34064  df-meas 34232  df-prob 34445
This theorem is referenced by:  probun  34456  cndprobnul  34474  dstrvprob  34509
  Copyright terms: Public domain W3C validator