| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prob01 | Structured version Visualization version GIF version | ||
| Description: A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| prob01 | ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domprobmeas 34413 | . . . . 5 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
| 2 | measvxrge0 34208 | . . . . 5 ⊢ ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]+∞)) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]+∞)) |
| 4 | elxrge0 13349 | . . . 4 ⊢ ((𝑃‘𝐴) ∈ (0[,]+∞) ↔ ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴))) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴))) |
| 6 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝑃 ∈ (measures‘dom 𝑃)) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃) | |
| 8 | measbase 34200 | . . . . . 6 ⊢ (𝑃 ∈ (measures‘dom 𝑃) → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 9 | unielsiga 34131 | . . . . . 6 ⊢ (dom 𝑃 ∈ ∪ ran sigAlgebra → ∪ dom 𝑃 ∈ dom 𝑃) | |
| 10 | 6, 8, 9 | 3syl 18 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ∪ dom 𝑃 ∈ dom 𝑃) |
| 11 | elssuni 4887 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝐴 ⊆ ∪ dom 𝑃) |
| 13 | 6, 7, 10, 12 | measssd 34218 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ≤ (𝑃‘∪ dom 𝑃)) |
| 14 | probtot 34415 | . . . . . 6 ⊢ (𝑃 ∈ Prob → (𝑃‘∪ dom 𝑃) = 1) | |
| 15 | 14 | breq2d 5101 | . . . . 5 ⊢ (𝑃 ∈ Prob → ((𝑃‘𝐴) ≤ (𝑃‘∪ dom 𝑃) ↔ (𝑃‘𝐴) ≤ 1)) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((𝑃‘𝐴) ≤ (𝑃‘∪ dom 𝑃) ↔ (𝑃‘𝐴) ≤ 1)) |
| 17 | 13, 16 | mpbid 232 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ≤ 1) |
| 18 | df-3an 1088 | . . 3 ⊢ (((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1) ↔ (((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴)) ∧ (𝑃‘𝐴) ≤ 1)) | |
| 19 | 5, 17, 18 | sylanbrc 583 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1)) |
| 20 | 0xr 11151 | . . 3 ⊢ 0 ∈ ℝ* | |
| 21 | 1xr 11163 | . . 3 ⊢ 1 ∈ ℝ* | |
| 22 | elicc1 13281 | . . 3 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑃‘𝐴) ∈ (0[,]1) ↔ ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1))) | |
| 23 | 20, 21, 22 | mp2an 692 | . 2 ⊢ ((𝑃‘𝐴) ∈ (0[,]1) ↔ ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1)) |
| 24 | 19, 23 | sylibr 234 | 1 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2110 ⊆ wss 3900 ∪ cuni 4857 class class class wbr 5089 dom cdm 5614 ran crn 5615 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 +∞cpnf 11135 ℝ*cxr 11137 ≤ cle 11139 [,]cicc 13240 sigAlgebracsiga 34111 measurescmeas 34198 Probcprb 34410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14966 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-ef 15966 df-sin 15968 df-cos 15969 df-pi 15971 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-ordt 17397 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-ps 18464 df-tsr 18465 df-plusf 18539 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-subrng 20454 df-subrg 20478 df-abv 20717 df-lmod 20788 df-scaf 20789 df-sra 21100 df-rgmod 21101 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-tmd 23980 df-tgp 23981 df-tsms 24035 df-trg 24068 df-xms 24228 df-ms 24229 df-tms 24230 df-nm 24490 df-ngp 24491 df-nrg 24493 df-nlm 24494 df-ii 24790 df-cncf 24791 df-limc 25787 df-dv 25788 df-log 26485 df-esum 34031 df-siga 34112 df-meas 34199 df-prob 34411 |
| This theorem is referenced by: probun 34422 probdif 34423 probvalrnd 34427 totprobd 34429 cndprobin 34437 cndprob01 34438 cndprobtot 34439 cndprobnul 34440 cndprobprob 34441 bayesth 34442 dstrvprob 34475 dstfrvclim1 34481 |
| Copyright terms: Public domain | W3C validator |