![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prob01 | Structured version Visualization version GIF version |
Description: A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
prob01 | β’ ((π β Prob β§ π΄ β dom π) β (πβπ΄) β (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domprobmeas 33695 | . . . . 5 β’ (π β Prob β π β (measuresβdom π)) | |
2 | measvxrge0 33489 | . . . . 5 β’ ((π β (measuresβdom π) β§ π΄ β dom π) β (πβπ΄) β (0[,]+β)) | |
3 | 1, 2 | sylan 580 | . . . 4 β’ ((π β Prob β§ π΄ β dom π) β (πβπ΄) β (0[,]+β)) |
4 | elxrge0 13438 | . . . 4 β’ ((πβπ΄) β (0[,]+β) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄))) | |
5 | 3, 4 | sylib 217 | . . 3 β’ ((π β Prob β§ π΄ β dom π) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄))) |
6 | 1 | adantr 481 | . . . . 5 β’ ((π β Prob β§ π΄ β dom π) β π β (measuresβdom π)) |
7 | simpr 485 | . . . . 5 β’ ((π β Prob β§ π΄ β dom π) β π΄ β dom π) | |
8 | measbase 33481 | . . . . . 6 β’ (π β (measuresβdom π) β dom π β βͺ ran sigAlgebra) | |
9 | unielsiga 33412 | . . . . . 6 β’ (dom π β βͺ ran sigAlgebra β βͺ dom π β dom π) | |
10 | 6, 8, 9 | 3syl 18 | . . . . 5 β’ ((π β Prob β§ π΄ β dom π) β βͺ dom π β dom π) |
11 | elssuni 4941 | . . . . . 6 β’ (π΄ β dom π β π΄ β βͺ dom π) | |
12 | 11 | adantl 482 | . . . . 5 β’ ((π β Prob β§ π΄ β dom π) β π΄ β βͺ dom π) |
13 | 6, 7, 10, 12 | measssd 33499 | . . . 4 β’ ((π β Prob β§ π΄ β dom π) β (πβπ΄) β€ (πββͺ dom π)) |
14 | probtot 33697 | . . . . . 6 β’ (π β Prob β (πββͺ dom π) = 1) | |
15 | 14 | breq2d 5160 | . . . . 5 β’ (π β Prob β ((πβπ΄) β€ (πββͺ dom π) β (πβπ΄) β€ 1)) |
16 | 15 | adantr 481 | . . . 4 β’ ((π β Prob β§ π΄ β dom π) β ((πβπ΄) β€ (πββͺ dom π) β (πβπ΄) β€ 1)) |
17 | 13, 16 | mpbid 231 | . . 3 β’ ((π β Prob β§ π΄ β dom π) β (πβπ΄) β€ 1) |
18 | df-3an 1089 | . . 3 β’ (((πβπ΄) β β* β§ 0 β€ (πβπ΄) β§ (πβπ΄) β€ 1) β (((πβπ΄) β β* β§ 0 β€ (πβπ΄)) β§ (πβπ΄) β€ 1)) | |
19 | 5, 17, 18 | sylanbrc 583 | . 2 β’ ((π β Prob β§ π΄ β dom π) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄) β§ (πβπ΄) β€ 1)) |
20 | 0xr 11265 | . . 3 β’ 0 β β* | |
21 | 1xr 11277 | . . 3 β’ 1 β β* | |
22 | elicc1 13372 | . . 3 β’ ((0 β β* β§ 1 β β*) β ((πβπ΄) β (0[,]1) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄) β§ (πβπ΄) β€ 1))) | |
23 | 20, 21, 22 | mp2an 690 | . 2 β’ ((πβπ΄) β (0[,]1) β ((πβπ΄) β β* β§ 0 β€ (πβπ΄) β§ (πβπ΄) β€ 1)) |
24 | 19, 23 | sylibr 233 | 1 β’ ((π β Prob β§ π΄ β dom π) β (πβπ΄) β (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 β wcel 2106 β wss 3948 βͺ cuni 4908 class class class wbr 5148 dom cdm 5676 ran crn 5677 βcfv 6543 (class class class)co 7411 0cc0 11112 1c1 11113 +βcpnf 11249 β*cxr 11251 β€ cle 11253 [,]cicc 13331 sigAlgebracsiga 33392 measurescmeas 33479 Probcprb 33692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-dju 9898 df-card 9936 df-acn 9939 df-ac 10113 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ioc 13333 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-fac 14238 df-bc 14267 df-hash 14295 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 df-sin 16017 df-cos 16018 df-pi 16020 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-ordt 17451 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-ps 18523 df-tsr 18524 df-plusf 18564 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-subrng 20434 df-subrg 20459 df-abv 20568 df-lmod 20616 df-scaf 20617 df-sra 20930 df-rgmod 20931 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-tmd 23796 df-tgp 23797 df-tsms 23851 df-trg 23884 df-xms 24046 df-ms 24047 df-tms 24048 df-nm 24311 df-ngp 24312 df-nrg 24314 df-nlm 24315 df-ii 24617 df-cncf 24618 df-limc 25607 df-dv 25608 df-log 26289 df-esum 33312 df-siga 33393 df-meas 33480 df-prob 33693 |
This theorem is referenced by: probun 33704 probdif 33705 probvalrnd 33709 totprobd 33711 cndprobin 33719 cndprob01 33720 cndprobtot 33721 cndprobnul 33722 cndprobprob 33723 bayesth 33724 dstrvprob 33756 dstfrvclim1 33762 |
Copyright terms: Public domain | W3C validator |