Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvnul Structured version   Visualization version   GIF version

Theorem measvnul 33192
Description: The measure of the empty set is always zero. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measvnul (𝑀 ∈ (measuresβ€˜π‘†) β†’ (π‘€β€˜βˆ…) = 0)

Proof of Theorem measvnul
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 measbase 33183 . . . 4 (𝑀 ∈ (measuresβ€˜π‘†) β†’ 𝑆 ∈ βˆͺ ran sigAlgebra)
2 ismeas 33185 . . . 4 (𝑆 ∈ βˆͺ ran sigAlgebra β†’ (𝑀 ∈ (measuresβ€˜π‘†) ↔ (𝑀:π‘†βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘¦ ∈ 𝒫 𝑆((𝑦 β‰Ό Ο‰ ∧ Disj π‘₯ ∈ 𝑦 π‘₯) β†’ (π‘€β€˜βˆͺ 𝑦) = Ξ£*π‘₯ ∈ 𝑦(π‘€β€˜π‘₯)))))
31, 2syl 17 . . 3 (𝑀 ∈ (measuresβ€˜π‘†) β†’ (𝑀 ∈ (measuresβ€˜π‘†) ↔ (𝑀:π‘†βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘¦ ∈ 𝒫 𝑆((𝑦 β‰Ό Ο‰ ∧ Disj π‘₯ ∈ 𝑦 π‘₯) β†’ (π‘€β€˜βˆͺ 𝑦) = Ξ£*π‘₯ ∈ 𝑦(π‘€β€˜π‘₯)))))
43ibi 266 . 2 (𝑀 ∈ (measuresβ€˜π‘†) β†’ (𝑀:π‘†βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘¦ ∈ 𝒫 𝑆((𝑦 β‰Ό Ο‰ ∧ Disj π‘₯ ∈ 𝑦 π‘₯) β†’ (π‘€β€˜βˆͺ 𝑦) = Ξ£*π‘₯ ∈ 𝑦(π‘€β€˜π‘₯))))
54simp2d 1143 1 (𝑀 ∈ (measuresβ€˜π‘†) β†’ (π‘€β€˜βˆ…) = 0)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆ…c0 4321  π’« cpw 4601  βˆͺ cuni 4907  Disj wdisj 5112   class class class wbr 5147  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851   β‰Ό cdom 8933  0cc0 11106  +∞cpnf 11241  [,]cicc 13323  Ξ£*cesum 33013  sigAlgebracsiga 33094  measurescmeas 33181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-esum 33014  df-meas 33182
This theorem is referenced by:  measxun2  33196  measvunilem0  33199  measssd  33201  measinb  33207  measres  33208  measdivcst  33210  measdivcstALTV  33211  truae  33229  probnul  33401
  Copyright terms: Public domain W3C validator