MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftfund Structured version   Visualization version   GIF version

Theorem qliftfund 8753
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
qliftfun.4 (𝑥 = 𝑦𝐴 = 𝐵)
qliftfund.6 ((𝜑𝑥𝑅𝑦) → 𝐴 = 𝐵)
Assertion
Ref Expression
qliftfund (𝜑 → Fun 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝜑   𝑥,𝑅,𝑦   𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem qliftfund
StepHypRef Expression
1 qliftfund.6 . . . 4 ((𝜑𝑥𝑅𝑦) → 𝐴 = 𝐵)
21ex 412 . . 3 (𝜑 → (𝑥𝑅𝑦𝐴 = 𝐵))
32alrimivv 1928 . 2 (𝜑 → ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵))
4 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
5 qlift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑌)
6 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
7 qlift.4 . . 3 (𝜑𝑋𝑉)
8 qliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
94, 5, 6, 7, 8qliftfun 8752 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
103, 9mpbird 257 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  cmpt 5183  ran crn 5632  Fun wfun 6493   Er wer 8645  [cec 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-er 8648  df-ec 8650  df-qs 8654
This theorem is referenced by:  orbstafun  19219  frgpupf  19679
  Copyright terms: Public domain W3C validator