| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbstafun | Structured version Visualization version GIF version | ||
| Description: Existence and uniqueness for the function of orbsta 19225. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| gasta.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gasta.2 | ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
| orbsta.r | ⊢ ∼ = (𝐺 ~QG 𝐻) |
| orbsta.f | ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) |
| Ref | Expression |
|---|---|
| orbstafun | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbsta.f | . 2 ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) | |
| 2 | ovexd 7381 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑘 ⊕ 𝐴) ∈ V) | |
| 3 | gasta.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | gasta.2 | . . . 4 ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} | |
| 5 | 3, 4 | gastacl 19221 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |
| 6 | orbsta.r | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝐻) | |
| 7 | 3, 6 | eqger 19090 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∼ Er 𝑋) |
| 9 | 3 | fvexi 6836 | . . 3 ⊢ 𝑋 ∈ V |
| 10 | 9 | a1i 11 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝑋 ∈ V) |
| 11 | oveq1 7353 | . 2 ⊢ (𝑘 = ℎ → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
| 12 | simpr 484 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∼ ℎ) | |
| 13 | subgrcl 19044 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 14 | 3 | subgss 19040 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
| 15 | eqid 2731 | . . . . . . . . . 10 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 16 | eqid 2731 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 3, 15, 16, 6 | eqgval 19089 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ⊆ 𝑋) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
| 18 | 13, 14, 17 | syl2anc 584 | . . . . . . . 8 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
| 19 | 5, 18 | syl 17 | . . . . . . 7 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
| 20 | 19 | biimpa 476 | . . . . . 6 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻)) |
| 21 | 20 | simp1d 1142 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∈ 𝑋) |
| 22 | 20 | simp2d 1143 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → ℎ ∈ 𝑋) |
| 23 | 21, 22 | jca 511 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) |
| 24 | 3, 4, 6 | gastacos 19222 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
| 25 | 23, 24 | syldan 591 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
| 26 | 12, 25 | mpbid 232 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) |
| 27 | 1, 2, 8, 10, 11, 26 | qliftfund 8727 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 Er wer 8619 [cec 8620 Basecbs 17120 +gcplusg 17161 Grpcgrp 18846 invgcminusg 18847 SubGrpcsubg 19033 ~QG cqg 19035 GrpAct cga 19201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-eqg 19038 df-ga 19202 |
| This theorem is referenced by: orbstaval 19224 orbsta 19225 |
| Copyright terms: Public domain | W3C validator |