![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbstafun | Structured version Visualization version GIF version |
Description: Existence and uniqueness for the function of orbsta 19101. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
gasta.1 | ⊢ 𝑋 = (Base‘𝐺) |
gasta.2 | ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
orbsta.r | ⊢ ∼ = (𝐺 ~QG 𝐻) |
orbsta.f | ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ ⟨[𝑘] ∼ , (𝑘 ⊕ 𝐴)⟩) |
Ref | Expression |
---|---|
orbstafun | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbsta.f | . 2 ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ ⟨[𝑘] ∼ , (𝑘 ⊕ 𝐴)⟩) | |
2 | ovexd 7396 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑘 ⊕ 𝐴) ∈ V) | |
3 | gasta.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
4 | gasta.2 | . . . 4 ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} | |
5 | 3, 4 | gastacl 19097 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |
6 | orbsta.r | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝐻) | |
7 | 3, 6 | eqger 18988 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
8 | 5, 7 | syl 17 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∼ Er 𝑋) |
9 | 3 | fvexi 6860 | . . 3 ⊢ 𝑋 ∈ V |
10 | 9 | a1i 11 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝑋 ∈ V) |
11 | oveq1 7368 | . 2 ⊢ (𝑘 = ℎ → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
12 | simpr 486 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∼ ℎ) | |
13 | subgrcl 18941 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
14 | 3 | subgss 18937 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
15 | eqid 2733 | . . . . . . . . . 10 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
16 | eqid 2733 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 3, 15, 16, 6 | eqgval 18987 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ⊆ 𝑋) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
18 | 13, 14, 17 | syl2anc 585 | . . . . . . . 8 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
19 | 5, 18 | syl 17 | . . . . . . 7 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
20 | 19 | biimpa 478 | . . . . . 6 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻)) |
21 | 20 | simp1d 1143 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∈ 𝑋) |
22 | 20 | simp2d 1144 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → ℎ ∈ 𝑋) |
23 | 21, 22 | jca 513 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) |
24 | 3, 4, 6 | gastacos 19098 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
25 | 23, 24 | syldan 592 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
26 | 12, 25 | mpbid 231 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) |
27 | 1, 2, 8, 10, 11, 26 | qliftfund 8748 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 {crab 3406 Vcvv 3447 ⊆ wss 3914 ⟨cop 4596 class class class wbr 5109 ↦ cmpt 5192 ran crn 5638 Fun wfun 6494 ‘cfv 6500 (class class class)co 7361 Er wer 8651 [cec 8652 Basecbs 17091 +gcplusg 17141 Grpcgrp 18756 invgcminusg 18757 SubGrpcsubg 18930 ~QG cqg 18932 GrpAct cga 19077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-ec 8656 df-qs 8660 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-grp 18759 df-minusg 18760 df-subg 18933 df-eqg 18935 df-ga 19078 |
This theorem is referenced by: orbstaval 19100 orbsta 19101 |
Copyright terms: Public domain | W3C validator |