| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orbstafun | Structured version Visualization version GIF version | ||
| Description: Existence and uniqueness for the function of orbsta 19221. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| gasta.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gasta.2 | ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
| orbsta.r | ⊢ ∼ = (𝐺 ~QG 𝐻) |
| orbsta.f | ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) |
| Ref | Expression |
|---|---|
| orbstafun | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbsta.f | . 2 ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) | |
| 2 | ovexd 7404 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑘 ⊕ 𝐴) ∈ V) | |
| 3 | gasta.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | gasta.2 | . . . 4 ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} | |
| 5 | 3, 4 | gastacl 19217 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |
| 6 | orbsta.r | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝐻) | |
| 7 | 3, 6 | eqger 19086 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∼ Er 𝑋) |
| 9 | 3 | fvexi 6854 | . . 3 ⊢ 𝑋 ∈ V |
| 10 | 9 | a1i 11 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝑋 ∈ V) |
| 11 | oveq1 7376 | . 2 ⊢ (𝑘 = ℎ → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
| 12 | simpr 484 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∼ ℎ) | |
| 13 | subgrcl 19039 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 14 | 3 | subgss 19035 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
| 15 | eqid 2729 | . . . . . . . . . 10 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 16 | eqid 2729 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 3, 15, 16, 6 | eqgval 19085 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ⊆ 𝑋) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
| 18 | 13, 14, 17 | syl2anc 584 | . . . . . . . 8 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
| 19 | 5, 18 | syl 17 | . . . . . . 7 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
| 20 | 19 | biimpa 476 | . . . . . 6 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻)) |
| 21 | 20 | simp1d 1142 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∈ 𝑋) |
| 22 | 20 | simp2d 1143 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → ℎ ∈ 𝑋) |
| 23 | 21, 22 | jca 511 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) |
| 24 | 3, 4, 6 | gastacos 19218 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
| 25 | 23, 24 | syldan 591 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
| 26 | 12, 25 | mpbid 232 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) |
| 27 | 1, 2, 8, 10, 11, 26 | qliftfund 8753 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ⊆ wss 3911 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 ran crn 5632 Fun wfun 6493 ‘cfv 6499 (class class class)co 7369 Er wer 8645 [cec 8646 Basecbs 17155 +gcplusg 17196 Grpcgrp 18841 invgcminusg 18842 SubGrpcsubg 19028 ~QG cqg 19030 GrpAct cga 19197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-eqg 19033 df-ga 19198 |
| This theorem is referenced by: orbstaval 19220 orbsta 19221 |
| Copyright terms: Public domain | W3C validator |