![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbstafun | Structured version Visualization version GIF version |
Description: Existence and uniqueness for the function of orbsta 19264. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
gasta.1 | ⊢ 𝑋 = (Base‘𝐺) |
gasta.2 | ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
orbsta.r | ⊢ ∼ = (𝐺 ~QG 𝐻) |
orbsta.f | ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ ⟨[𝑘] ∼ , (𝑘 ⊕ 𝐴)⟩) |
Ref | Expression |
---|---|
orbstafun | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbsta.f | . 2 ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ ⟨[𝑘] ∼ , (𝑘 ⊕ 𝐴)⟩) | |
2 | ovexd 7455 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑘 ⊕ 𝐴) ∈ V) | |
3 | gasta.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
4 | gasta.2 | . . . 4 ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} | |
5 | 3, 4 | gastacl 19260 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |
6 | orbsta.r | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝐻) | |
7 | 3, 6 | eqger 19133 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
8 | 5, 7 | syl 17 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∼ Er 𝑋) |
9 | 3 | fvexi 6911 | . . 3 ⊢ 𝑋 ∈ V |
10 | 9 | a1i 11 | . 2 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝑋 ∈ V) |
11 | oveq1 7427 | . 2 ⊢ (𝑘 = ℎ → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
12 | simpr 484 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∼ ℎ) | |
13 | subgrcl 19086 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
14 | 3 | subgss 19082 | . . . . . . . . 9 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
15 | eqid 2728 | . . . . . . . . . 10 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
16 | eqid 2728 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 3, 15, 16, 6 | eqgval 19132 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ⊆ 𝑋) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
18 | 13, 14, 17 | syl2anc 583 | . . . . . . . 8 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
19 | 5, 18 | syl 17 | . . . . . . 7 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝑘 ∼ ℎ ↔ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻))) |
20 | 19 | biimpa 476 | . . . . . 6 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑘)(+g‘𝐺)ℎ) ∈ 𝐻)) |
21 | 20 | simp1d 1140 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → 𝑘 ∈ 𝑋) |
22 | 20 | simp2d 1141 | . . . . 5 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → ℎ ∈ 𝑋) |
23 | 21, 22 | jca 511 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) |
24 | 3, 4, 6 | gastacos 19261 | . . . 4 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋)) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
25 | 23, 24 | syldan 590 | . . 3 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ∼ ℎ ↔ (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴))) |
26 | 12, 25 | mpbid 231 | . 2 ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∼ ℎ) → (𝑘 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) |
27 | 1, 2, 8, 10, 11, 26 | qliftfund 8822 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3429 Vcvv 3471 ⊆ wss 3947 ⟨cop 4635 class class class wbr 5148 ↦ cmpt 5231 ran crn 5679 Fun wfun 6542 ‘cfv 6548 (class class class)co 7420 Er wer 8722 [cec 8723 Basecbs 17180 +gcplusg 17233 Grpcgrp 18890 invgcminusg 18891 SubGrpcsubg 19075 ~QG cqg 19077 GrpAct cga 19240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-subg 19078 df-eqg 19080 df-ga 19241 |
This theorem is referenced by: orbstaval 19263 orbsta 19264 |
Copyright terms: Public domain | W3C validator |