MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbstafun Structured version   Visualization version   GIF version

Theorem orbstafun 19262
Description: Existence and uniqueness for the function of orbsta 19264. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
orbsta.f 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
Assertion
Ref Expression
orbstafun (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
Distinct variable groups:   ,𝑘   𝑢,𝑘,   𝐴,𝑘,𝑢   𝑘,𝐺,𝑢   𝑘,𝑋,𝑢   𝑘,𝑌
Allowed substitution hints:   (𝑢)   𝐹(𝑢,𝑘)   𝐻(𝑢,𝑘)   𝑌(𝑢)

Proof of Theorem orbstafun
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 orbsta.f . 2 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
2 ovexd 7455 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ V)
3 gasta.1 . . . 4 𝑋 = (Base‘𝐺)
4 gasta.2 . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
53, 4gastacl 19260 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
6 orbsta.r . . . 4 = (𝐺 ~QG 𝐻)
73, 6eqger 19133 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
85, 7syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Er 𝑋)
93fvexi 6911 . . 3 𝑋 ∈ V
109a1i 11 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝑋 ∈ V)
11 oveq1 7427 . 2 (𝑘 = → (𝑘 𝐴) = ( 𝐴))
12 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → 𝑘 )
13 subgrcl 19086 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
143subgss 19082 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
15 eqid 2728 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
16 eqid 2728 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
173, 15, 16, 6eqgval 19132 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻𝑋) → (𝑘 ↔ (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻)))
1813, 14, 17syl2anc 583 . . . . . . . 8 (𝐻 ∈ (SubGrp‘𝐺) → (𝑘 ↔ (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻)))
195, 18syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (𝑘 ↔ (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻)))
2019biimpa 476 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘𝑋𝑋 ∧ (((invg𝐺)‘𝑘)(+g𝐺)) ∈ 𝐻))
2120simp1d 1140 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → 𝑘𝑋)
2220simp2d 1141 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → 𝑋)
2321, 22jca 511 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘𝑋𝑋))
243, 4, 6gastacos 19261 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑘𝑋𝑋)) → (𝑘 ↔ (𝑘 𝐴) = ( 𝐴)))
2523, 24syldan 590 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘 ↔ (𝑘 𝐴) = ( 𝐴)))
2612, 25mpbid 231 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘 ) → (𝑘 𝐴) = ( 𝐴))
271, 2, 8, 10, 11, 26qliftfund 8822 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  wss 3947  cop 4635   class class class wbr 5148  cmpt 5231  ran crn 5679  Fun wfun 6542  cfv 6548  (class class class)co 7420   Er wer 8722  [cec 8723  Basecbs 17180  +gcplusg 17233  Grpcgrp 18890  invgcminusg 18891  SubGrpcsubg 19075   ~QG cqg 19077   GrpAct cga 19240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-subg 19078  df-eqg 19080  df-ga 19241
This theorem is referenced by:  orbstaval  19263  orbsta  19264
  Copyright terms: Public domain W3C validator