MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsconst Structured version   Visualization version   GIF version

Theorem repsconst 14413
Description: Construct a function mapping a half-open range of nonnegative integers to a constant, see also fconstmpt 5640. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repsconst ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆}))

Proof of Theorem repsconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reps 14411 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
2 fconstmpt 5640 . 2 ((0..^𝑁) × {𝑆}) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)
31, 2eqtr4di 2797 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {csn 4558  cmpt 5153   × cxp 5578  (class class class)co 7255  0cc0 10802  0cn0 12163  ..^cfzo 13311   repeatS creps 14409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-reps 14410
This theorem is referenced by:  repsdf2  14419  repsw1  14424
  Copyright terms: Public domain W3C validator