| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repsf | Structured version Visualization version GIF version | ||
| Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.) |
| Ref | Expression |
|---|---|
| repsf | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝑉) | |
| 2 | 1 | ralrimiva 3132 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
| 4 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆) | |
| 5 | 4 | fmpt 7100 | . . 3 ⊢ (∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
| 6 | 3, 5 | sylib 218 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
| 7 | reps 14788 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) | |
| 8 | 7 | feq1d 6690 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉)) |
| 9 | 6, 8 | mpbird 257 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 ⟶wf 6527 (class class class)co 7405 0cc0 11129 ℕ0cn0 12501 ..^cfzo 13671 repeatS creps 14786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-reps 14787 |
| This theorem is referenced by: repsw 14793 repswlen 14794 repswswrd 14802 repsco 14859 |
| Copyright terms: Public domain | W3C validator |