MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsf Structured version   Visualization version   GIF version

Theorem repsf 14677
Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repsf ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉)

Proof of Theorem repsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑆𝑉𝑥 ∈ (0..^𝑁)) → 𝑆𝑉)
21ralrimiva 3124 . . . 4 (𝑆𝑉 → ∀𝑥 ∈ (0..^𝑁)𝑆𝑉)
32adantr 480 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → ∀𝑥 ∈ (0..^𝑁)𝑆𝑉)
4 eqid 2731 . . . 4 (𝑥 ∈ (0..^𝑁) ↦ 𝑆) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)
54fmpt 7043 . . 3 (∀𝑥 ∈ (0..^𝑁)𝑆𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉)
63, 5sylib 218 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉)
7 reps 14674 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
87feq1d 6633 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉))
96, 8mpbird 257 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  cmpt 5172  wf 6477  (class class class)co 7346  0cc0 11003  0cn0 12378  ..^cfzo 13551   repeatS creps 14672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-reps 14673
This theorem is referenced by:  repsw  14679  repswlen  14680  repswswrd  14688  repsco  14744
  Copyright terms: Public domain W3C validator