| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repsf | Structured version Visualization version GIF version | ||
| Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.) |
| Ref | Expression |
|---|---|
| repsf | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝑉) | |
| 2 | 1 | ralrimiva 3125 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
| 4 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆) | |
| 5 | 4 | fmpt 7049 | . . 3 ⊢ (∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
| 6 | 3, 5 | sylib 218 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
| 7 | reps 14679 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) | |
| 8 | 7 | feq1d 6638 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉)) |
| 9 | 6, 8 | mpbird 257 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ↦ cmpt 5174 ⟶wf 6482 (class class class)co 7352 0cc0 11013 ℕ0cn0 12388 ..^cfzo 13556 repeatS creps 14677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-reps 14678 |
| This theorem is referenced by: repsw 14684 repswlen 14685 repswswrd 14693 repsco 14749 |
| Copyright terms: Public domain | W3C validator |