![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > repsf | Structured version Visualization version GIF version |
Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.) |
Ref | Expression |
---|---|
repsf | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝑉) | |
2 | 1 | ralrimiva 3148 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
3 | 2 | adantr 474 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
4 | eqid 2778 | . . . 4 ⊢ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆) | |
5 | 4 | fmpt 6646 | . . 3 ⊢ (∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
6 | 3, 5 | sylib 210 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
7 | reps 13922 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) | |
8 | 7 | feq1d 6278 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉)) |
9 | 6, 8 | mpbird 249 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 ∀wral 3090 ↦ cmpt 4967 ⟶wf 6133 (class class class)co 6924 0cc0 10274 ℕ0cn0 11647 ..^cfzo 12789 repeatS creps 13920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-reps 13921 |
This theorem is referenced by: repsw 13927 repswlen 13928 repswswrd 13936 repsco 13997 |
Copyright terms: Public domain | W3C validator |