| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repsf | Structured version Visualization version GIF version | ||
| Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.) |
| Ref | Expression |
|---|---|
| repsf | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝑉) | |
| 2 | 1 | ralrimiva 3125 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉) |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆) | |
| 5 | 4 | fmpt 7082 | . . 3 ⊢ (∀𝑥 ∈ (0..^𝑁)𝑆 ∈ 𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
| 6 | 3, 5 | sylib 218 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉) |
| 7 | reps 14735 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) | |
| 8 | 7 | feq1d 6670 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉 ↔ (𝑥 ∈ (0..^𝑁) ↦ 𝑆):(0..^𝑁)⟶𝑉)) |
| 9 | 6, 8 | mpbird 257 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5188 ⟶wf 6507 (class class class)co 7387 0cc0 11068 ℕ0cn0 12442 ..^cfzo 13615 repeatS creps 14733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-reps 14734 |
| This theorem is referenced by: repsw 14740 repswlen 14741 repswswrd 14749 repsco 14806 |
| Copyright terms: Public domain | W3C validator |