MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsw1 Structured version   Visualization version   GIF version

Theorem repsw1 14133
Description: The "repeated symbol word" of length 1. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repsw1 (𝑆𝑉 → (𝑆 repeatS 1) = ⟨“𝑆”⟩)

Proof of Theorem repsw1
StepHypRef Expression
1 1nn0 11901 . . . 4 1 ∈ ℕ0
2 repsconst 14122 . . . 4 ((𝑆𝑉 ∧ 1 ∈ ℕ0) → (𝑆 repeatS 1) = ((0..^1) × {𝑆}))
31, 2mpan2 687 . . 3 (𝑆𝑉 → (𝑆 repeatS 1) = ((0..^1) × {𝑆}))
4 fzo01 13107 . . . . 5 (0..^1) = {0}
54a1i 11 . . . 4 (𝑆𝑉 → (0..^1) = {0})
65xpeq1d 5577 . . 3 (𝑆𝑉 → ((0..^1) × {𝑆}) = ({0} × {𝑆}))
7 c0ex 10623 . . . 4 0 ∈ V
8 xpsng 6893 . . . 4 ((0 ∈ V ∧ 𝑆𝑉) → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
97, 8mpan 686 . . 3 (𝑆𝑉 → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
103, 6, 93eqtrd 2857 . 2 (𝑆𝑉 → (𝑆 repeatS 1) = {⟨0, 𝑆⟩})
11 s1val 13940 . 2 (𝑆𝑉 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
1210, 11eqtr4d 2856 1 (𝑆𝑉 → (𝑆 repeatS 1) = ⟨“𝑆”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  Vcvv 3492  {csn 4557  cop 4563   × cxp 5546  (class class class)co 7145  0cc0 10525  1c1 10526  0cn0 11885  ..^cfzo 13021  ⟨“cs1 13937   repeatS creps 14118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-s1 13938  df-reps 14119
This theorem is referenced by:  repsw2  14300  repsw3  14301
  Copyright terms: Public domain W3C validator