MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revval Structured version   Visualization version   GIF version

Theorem revval 14725
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revval (𝑊𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
Distinct variable group:   𝑥,𝑊
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem revval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6858 . . . . 5 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
32oveq2d 7403 . . . 4 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
4 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
52oveq1d 7402 . . . . . 6 (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1))
65oveq1d 7402 . . . . 5 (𝑤 = 𝑊 → (((♯‘𝑤) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
74, 6fveq12d 6865 . . . 4 (𝑤 = 𝑊 → (𝑤‘(((♯‘𝑤) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
83, 7mpteq12dv 5194 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
9 df-reverse 14724 . . 3 reverse = (𝑤 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥))))
10 ovex 7420 . . . 4 (0..^(♯‘𝑊)) ∈ V
1110mptex 7197 . . 3 (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) ∈ V
128, 9, 11fvmpt 6968 . 2 (𝑊 ∈ V → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
131, 12syl 17 1 (𝑊𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  cmin 11405  ..^cfzo 13615  chash 14295  reversecreverse 14723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-reverse 14724
This theorem is referenced by:  revcl  14726  revlen  14727  revfv  14728  repswrevw  14752  revco  14800
  Copyright terms: Public domain W3C validator