Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > revval | Structured version Visualization version GIF version |
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revval | ⊢ (𝑊 ∈ 𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
2 | fveq2 6756 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
3 | 2 | oveq2d 7271 | . . . 4 ⊢ (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊))) |
4 | id 22 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
5 | 2 | oveq1d 7270 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
6 | 5 | oveq1d 7270 | . . . . 5 ⊢ (𝑤 = 𝑊 → (((♯‘𝑤) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥)) |
7 | 4, 6 | fveq12d 6763 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤‘(((♯‘𝑤) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) |
8 | 3, 7 | mpteq12dv 5161 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
9 | df-reverse 14400 | . . 3 ⊢ reverse = (𝑤 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥)))) | |
10 | ovex 7288 | . . . 4 ⊢ (0..^(♯‘𝑊)) ∈ V | |
11 | 10 | mptex 7081 | . . 3 ⊢ (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) ∈ V |
12 | 8, 9, 11 | fvmpt 6857 | . 2 ⊢ (𝑊 ∈ V → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
13 | 1, 12 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 − cmin 11135 ..^cfzo 13311 ♯chash 13972 reversecreverse 14399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-reverse 14400 |
This theorem is referenced by: revcl 14402 revlen 14403 revfv 14404 repswrevw 14428 revco 14475 |
Copyright terms: Public domain | W3C validator |