| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > revval | Structured version Visualization version GIF version | ||
| Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| revval | ⊢ (𝑊 ∈ 𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 2 | fveq2 6822 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
| 3 | 2 | oveq2d 7362 | . . . 4 ⊢ (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊))) |
| 4 | id 22 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 5 | 2 | oveq1d 7361 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
| 6 | 5 | oveq1d 7361 | . . . . 5 ⊢ (𝑤 = 𝑊 → (((♯‘𝑤) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥)) |
| 7 | 4, 6 | fveq12d 6829 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤‘(((♯‘𝑤) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) |
| 8 | 3, 7 | mpteq12dv 5178 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
| 9 | df-reverse 14663 | . . 3 ⊢ reverse = (𝑤 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥)))) | |
| 10 | ovex 7379 | . . . 4 ⊢ (0..^(♯‘𝑊)) ∈ V | |
| 11 | 10 | mptex 7157 | . . 3 ⊢ (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) ∈ V |
| 12 | 8, 9, 11 | fvmpt 6929 | . 2 ⊢ (𝑊 ∈ V → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
| 13 | 1, 12 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 − cmin 11341 ..^cfzo 13551 ♯chash 14234 reversecreverse 14662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-reverse 14663 |
| This theorem is referenced by: revcl 14665 revlen 14666 revfv 14667 repswrevw 14691 revco 14738 |
| Copyright terms: Public domain | W3C validator |