![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revval | Structured version Visualization version GIF version |
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revval | β’ (π β π β (reverseβπ) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (π β π β π β V) | |
2 | fveq2 6888 | . . . . 5 β’ (π€ = π β (β―βπ€) = (β―βπ)) | |
3 | 2 | oveq2d 7421 | . . . 4 β’ (π€ = π β (0..^(β―βπ€)) = (0..^(β―βπ))) |
4 | id 22 | . . . . 5 β’ (π€ = π β π€ = π) | |
5 | 2 | oveq1d 7420 | . . . . . 6 β’ (π€ = π β ((β―βπ€) β 1) = ((β―βπ) β 1)) |
6 | 5 | oveq1d 7420 | . . . . 5 β’ (π€ = π β (((β―βπ€) β 1) β π₯) = (((β―βπ) β 1) β π₯)) |
7 | 4, 6 | fveq12d 6895 | . . . 4 β’ (π€ = π β (π€β(((β―βπ€) β 1) β π₯)) = (πβ(((β―βπ) β 1) β π₯))) |
8 | 3, 7 | mpteq12dv 5238 | . . 3 β’ (π€ = π β (π₯ β (0..^(β―βπ€)) β¦ (π€β(((β―βπ€) β 1) β π₯))) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))) |
9 | df-reverse 14705 | . . 3 β’ reverse = (π€ β V β¦ (π₯ β (0..^(β―βπ€)) β¦ (π€β(((β―βπ€) β 1) β π₯)))) | |
10 | ovex 7438 | . . . 4 β’ (0..^(β―βπ)) β V | |
11 | 10 | mptex 7221 | . . 3 β’ (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯))) β V |
12 | 8, 9, 11 | fvmpt 6995 | . 2 β’ (π β V β (reverseβπ) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))) |
13 | 1, 12 | syl 17 | 1 β’ (π β π β (reverseβπ) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β¦ cmpt 5230 βcfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 β cmin 11440 ..^cfzo 13623 β―chash 14286 reversecreverse 14704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-reverse 14705 |
This theorem is referenced by: revcl 14707 revlen 14708 revfv 14709 repswrevw 14733 revco 14781 |
Copyright terms: Public domain | W3C validator |