MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revval Structured version   Visualization version   GIF version

Theorem revval 14706
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revval (π‘Š ∈ 𝑉 β†’ (reverseβ€˜π‘Š) = (π‘₯ ∈ (0..^(β™―β€˜π‘Š)) ↦ (π‘Šβ€˜(((β™―β€˜π‘Š) βˆ’ 1) βˆ’ π‘₯))))
Distinct variable group:   π‘₯,π‘Š
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem revval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (π‘Š ∈ 𝑉 β†’ π‘Š ∈ V)
2 fveq2 6888 . . . . 5 (𝑀 = π‘Š β†’ (β™―β€˜π‘€) = (β™―β€˜π‘Š))
32oveq2d 7421 . . . 4 (𝑀 = π‘Š β†’ (0..^(β™―β€˜π‘€)) = (0..^(β™―β€˜π‘Š)))
4 id 22 . . . . 5 (𝑀 = π‘Š β†’ 𝑀 = π‘Š)
52oveq1d 7420 . . . . . 6 (𝑀 = π‘Š β†’ ((β™―β€˜π‘€) βˆ’ 1) = ((β™―β€˜π‘Š) βˆ’ 1))
65oveq1d 7420 . . . . 5 (𝑀 = π‘Š β†’ (((β™―β€˜π‘€) βˆ’ 1) βˆ’ π‘₯) = (((β™―β€˜π‘Š) βˆ’ 1) βˆ’ π‘₯))
74, 6fveq12d 6895 . . . 4 (𝑀 = π‘Š β†’ (π‘€β€˜(((β™―β€˜π‘€) βˆ’ 1) βˆ’ π‘₯)) = (π‘Šβ€˜(((β™―β€˜π‘Š) βˆ’ 1) βˆ’ π‘₯)))
83, 7mpteq12dv 5238 . . 3 (𝑀 = π‘Š β†’ (π‘₯ ∈ (0..^(β™―β€˜π‘€)) ↦ (π‘€β€˜(((β™―β€˜π‘€) βˆ’ 1) βˆ’ π‘₯))) = (π‘₯ ∈ (0..^(β™―β€˜π‘Š)) ↦ (π‘Šβ€˜(((β™―β€˜π‘Š) βˆ’ 1) βˆ’ π‘₯))))
9 df-reverse 14705 . . 3 reverse = (𝑀 ∈ V ↦ (π‘₯ ∈ (0..^(β™―β€˜π‘€)) ↦ (π‘€β€˜(((β™―β€˜π‘€) βˆ’ 1) βˆ’ π‘₯))))
10 ovex 7438 . . . 4 (0..^(β™―β€˜π‘Š)) ∈ V
1110mptex 7221 . . 3 (π‘₯ ∈ (0..^(β™―β€˜π‘Š)) ↦ (π‘Šβ€˜(((β™―β€˜π‘Š) βˆ’ 1) βˆ’ π‘₯))) ∈ V
128, 9, 11fvmpt 6995 . 2 (π‘Š ∈ V β†’ (reverseβ€˜π‘Š) = (π‘₯ ∈ (0..^(β™―β€˜π‘Š)) ↦ (π‘Šβ€˜(((β™―β€˜π‘Š) βˆ’ 1) βˆ’ π‘₯))))
131, 12syl 17 1 (π‘Š ∈ 𝑉 β†’ (reverseβ€˜π‘Š) = (π‘₯ ∈ (0..^(β™―β€˜π‘Š)) ↦ (π‘Šβ€˜(((β™―β€˜π‘Š) βˆ’ 1) βˆ’ π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ↦ cmpt 5230  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   βˆ’ cmin 11440  ..^cfzo 13623  β™―chash 14286  reversecreverse 14704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-reverse 14705
This theorem is referenced by:  revcl  14707  revlen  14708  revfv  14709  repswrevw  14733  revco  14781
  Copyright terms: Public domain W3C validator