MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revval Structured version   Visualization version   GIF version

Theorem revval 14798
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revval (𝑊𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
Distinct variable group:   𝑥,𝑊
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem revval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3501 . 2 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6906 . . . . 5 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
32oveq2d 7447 . . . 4 (𝑤 = 𝑊 → (0..^(♯‘𝑤)) = (0..^(♯‘𝑊)))
4 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
52oveq1d 7446 . . . . . 6 (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1))
65oveq1d 7446 . . . . 5 (𝑤 = 𝑊 → (((♯‘𝑤) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
74, 6fveq12d 6913 . . . 4 (𝑤 = 𝑊 → (𝑤‘(((♯‘𝑤) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
83, 7mpteq12dv 5233 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
9 df-reverse 14797 . . 3 reverse = (𝑤 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑤)) ↦ (𝑤‘(((♯‘𝑤) − 1) − 𝑥))))
10 ovex 7464 . . . 4 (0..^(♯‘𝑊)) ∈ V
1110mptex 7243 . . 3 (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) ∈ V
128, 9, 11fvmpt 7016 . 2 (𝑊 ∈ V → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
131, 12syl 17 1 (𝑊𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cmpt 5225  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  cmin 11492  ..^cfzo 13694  chash 14369  reversecreverse 14796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-reverse 14797
This theorem is referenced by:  revcl  14799  revlen  14800  revfv  14801  repswrevw  14825  revco  14873
  Copyright terms: Public domain W3C validator