![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revcl | Structured version Visualization version GIF version |
Description: The reverse of a word is a word. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revcl | ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | revval 13840 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
2 | wrdf 13539 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
3 | 2 | adantr 473 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
4 | simpr 478 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊))) | |
5 | lencl 13553 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0) | |
6 | 5 | adantr 473 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ0) |
7 | 6 | nn0zd 11770 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℤ) |
8 | fzoval 12726 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
10 | 4, 9 | eleqtrd 2880 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1))) |
11 | fznn0sub2 12701 | . . . . . . 7 ⊢ (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) |
13 | 12, 9 | eleqtrrd 2881 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) |
14 | 3, 13 | ffvelrnd 6586 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) ∈ 𝐴) |
15 | 14 | fmpttd 6611 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴) |
16 | iswrdi 13538 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) ∈ Word 𝐴) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) ∈ Word 𝐴) |
18 | 1, 17 | eqeltrd 2878 | 1 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ↦ cmpt 4922 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 0cc0 10224 1c1 10225 − cmin 10556 ℕ0cn0 11580 ℤcz 11666 ...cfz 12580 ..^cfzo 12720 ♯chash 13370 Word cword 13534 reversecreverse 13838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-fzo 12721 df-hash 13371 df-word 13535 df-reverse 13839 |
This theorem is referenced by: revs1 13845 revccat 13846 revrev 13847 revco 13919 gsumwrev 18108 psgnuni 18232 efginvrel2 18453 efginvrel1 18454 frgp0 18488 frgpinv 18492 |
Copyright terms: Public domain | W3C validator |