MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revfv Structured version   Visualization version   GIF version

Theorem revfv 14801
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revfv ((𝑊 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))

Proof of Theorem revfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 revval 14798 . . 3 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
21fveq1d 6908 . 2 (𝑊 ∈ Word 𝐴 → ((reverse‘𝑊)‘𝑋) = ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋))
3 oveq2 7439 . . . 4 (𝑥 = 𝑋 → (((♯‘𝑊) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑋))
43fveq2d 6910 . . 3 (𝑥 = 𝑋 → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))
5 eqid 2737 . . 3 (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
6 fvex 6919 . . 3 (𝑊‘(((♯‘𝑊) − 1) − 𝑋)) ∈ V
74, 5, 6fvmpt 7016 . 2 (𝑋 ∈ (0..^(♯‘𝑊)) → ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))
82, 7sylan9eq 2797 1 ((𝑊 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5225  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  cmin 11492  ..^cfzo 13694  chash 14369  Word cword 14552  reversecreverse 14796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-reverse 14797
This theorem is referenced by:  revs1  14803  revccat  14804  revrev  14805  revco  14873  revpfxsfxrev  35121  revwlk  35130
  Copyright terms: Public domain W3C validator