![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revfv | Structured version Visualization version GIF version |
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revfv | β’ ((π β Word π΄ β§ π β (0..^(β―βπ))) β ((reverseβπ)βπ) = (πβ(((β―βπ) β 1) β π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | revval 14742 | . . 3 β’ (π β Word π΄ β (reverseβπ) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))) | |
2 | 1 | fveq1d 6899 | . 2 β’ (π β Word π΄ β ((reverseβπ)βπ) = ((π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))βπ)) |
3 | oveq2 7428 | . . . 4 β’ (π₯ = π β (((β―βπ) β 1) β π₯) = (((β―βπ) β 1) β π)) | |
4 | 3 | fveq2d 6901 | . . 3 β’ (π₯ = π β (πβ(((β―βπ) β 1) β π₯)) = (πβ(((β―βπ) β 1) β π))) |
5 | eqid 2728 | . . 3 β’ (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯))) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯))) | |
6 | fvex 6910 | . . 3 β’ (πβ(((β―βπ) β 1) β π)) β V | |
7 | 4, 5, 6 | fvmpt 7005 | . 2 β’ (π β (0..^(β―βπ)) β ((π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))βπ) = (πβ(((β―βπ) β 1) β π))) |
8 | 2, 7 | sylan9eq 2788 | 1 β’ ((π β Word π΄ β§ π β (0..^(β―βπ))) β ((reverseβπ)βπ) = (πβ(((β―βπ) β 1) β π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β¦ cmpt 5231 βcfv 6548 (class class class)co 7420 0cc0 11138 1c1 11139 β cmin 11474 ..^cfzo 13659 β―chash 14321 Word cword 14496 reversecreverse 14740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-reverse 14741 |
This theorem is referenced by: revs1 14747 revccat 14748 revrev 14749 revco 14817 revpfxsfxrev 34725 revwlk 34734 |
Copyright terms: Public domain | W3C validator |