Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > revfv | Structured version Visualization version GIF version |
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revfv | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | revval 14454 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
2 | 1 | fveq1d 6770 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((reverse‘𝑊)‘𝑋) = ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋)) |
3 | oveq2 7276 | . . . 4 ⊢ (𝑥 = 𝑋 → (((♯‘𝑊) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑋)) | |
4 | 3 | fveq2d 6772 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
5 | eqid 2739 | . . 3 ⊢ (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) | |
6 | fvex 6781 | . . 3 ⊢ (𝑊‘(((♯‘𝑊) − 1) − 𝑋)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6869 | . 2 ⊢ (𝑋 ∈ (0..^(♯‘𝑊)) → ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
8 | 2, 7 | sylan9eq 2799 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 − cmin 11188 ..^cfzo 13364 ♯chash 14025 Word cword 14198 reversecreverse 14452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-reverse 14453 |
This theorem is referenced by: revs1 14459 revccat 14460 revrev 14461 revco 14528 revpfxsfxrev 33056 revwlk 33065 |
Copyright terms: Public domain | W3C validator |