![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revfv | Structured version Visualization version GIF version |
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revfv | β’ ((π β Word π΄ β§ π β (0..^(β―βπ))) β ((reverseβπ)βπ) = (πβ(((β―βπ) β 1) β π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | revval 14709 | . . 3 β’ (π β Word π΄ β (reverseβπ) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))) | |
2 | 1 | fveq1d 6893 | . 2 β’ (π β Word π΄ β ((reverseβπ)βπ) = ((π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))βπ)) |
3 | oveq2 7416 | . . . 4 β’ (π₯ = π β (((β―βπ) β 1) β π₯) = (((β―βπ) β 1) β π)) | |
4 | 3 | fveq2d 6895 | . . 3 β’ (π₯ = π β (πβ(((β―βπ) β 1) β π₯)) = (πβ(((β―βπ) β 1) β π))) |
5 | eqid 2732 | . . 3 β’ (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯))) = (π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯))) | |
6 | fvex 6904 | . . 3 β’ (πβ(((β―βπ) β 1) β π)) β V | |
7 | 4, 5, 6 | fvmpt 6998 | . 2 β’ (π β (0..^(β―βπ)) β ((π₯ β (0..^(β―βπ)) β¦ (πβ(((β―βπ) β 1) β π₯)))βπ) = (πβ(((β―βπ) β 1) β π))) |
8 | 2, 7 | sylan9eq 2792 | 1 β’ ((π β Word π΄ β§ π β (0..^(β―βπ))) β ((reverseβπ)βπ) = (πβ(((β―βπ) β 1) β π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 β cmin 11443 ..^cfzo 13626 β―chash 14289 Word cword 14463 reversecreverse 14707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-reverse 14708 |
This theorem is referenced by: revs1 14714 revccat 14715 revrev 14716 revco 14784 revpfxsfxrev 34101 revwlk 34110 |
Copyright terms: Public domain | W3C validator |