| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > revfv | Structured version Visualization version GIF version | ||
| Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| revfv | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval 14684 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
| 2 | 1 | fveq1d 6828 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((reverse‘𝑊)‘𝑋) = ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋)) |
| 3 | oveq2 7361 | . . . 4 ⊢ (𝑥 = 𝑋 → (((♯‘𝑊) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑋)) | |
| 4 | 3 | fveq2d 6830 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| 5 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) | |
| 6 | fvex 6839 | . . 3 ⊢ (𝑊‘(((♯‘𝑊) − 1) − 𝑋)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6934 | . 2 ⊢ (𝑋 ∈ (0..^(♯‘𝑊)) → ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| 8 | 2, 7 | sylan9eq 2784 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 − cmin 11365 ..^cfzo 13575 ♯chash 14255 Word cword 14438 reversecreverse 14682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-reverse 14683 |
| This theorem is referenced by: revs1 14689 revccat 14690 revrev 14691 revco 14759 revpfxsfxrev 35088 revwlk 35097 |
| Copyright terms: Public domain | W3C validator |