MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revfv Structured version   Visualization version   GIF version

Theorem revfv 14763
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revfv ((𝑊 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))

Proof of Theorem revfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 revval 14760 . . 3 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
21fveq1d 6892 . 2 (𝑊 ∈ Word 𝐴 → ((reverse‘𝑊)‘𝑋) = ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋))
3 oveq2 7421 . . . 4 (𝑥 = 𝑋 → (((♯‘𝑊) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑋))
43fveq2d 6894 . . 3 (𝑥 = 𝑋 → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))
5 eqid 2726 . . 3 (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
6 fvex 6903 . . 3 (𝑊‘(((♯‘𝑊) − 1) − 𝑋)) ∈ V
74, 5, 6fvmpt 6998 . 2 (𝑋 ∈ (0..^(♯‘𝑊)) → ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))
82, 7sylan9eq 2786 1 ((𝑊 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cmpt 5226  cfv 6543  (class class class)co 7413  0cc0 11146  1c1 11147  cmin 11482  ..^cfzo 13672  chash 14339  Word cword 14514  reversecreverse 14758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-reverse 14759
This theorem is referenced by:  revs1  14765  revccat  14766  revrev  14767  revco  14835  revpfxsfxrev  34953  revwlk  34962
  Copyright terms: Public domain W3C validator