| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > revfv | Structured version Visualization version GIF version | ||
| Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| revfv | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval 14732 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
| 2 | 1 | fveq1d 6863 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((reverse‘𝑊)‘𝑋) = ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋)) |
| 3 | oveq2 7398 | . . . 4 ⊢ (𝑥 = 𝑋 → (((♯‘𝑊) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑋)) | |
| 4 | 3 | fveq2d 6865 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| 5 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) | |
| 6 | fvex 6874 | . . 3 ⊢ (𝑊‘(((♯‘𝑊) − 1) − 𝑋)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6971 | . 2 ⊢ (𝑋 ∈ (0..^(♯‘𝑊)) → ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| 8 | 2, 7 | sylan9eq 2785 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 − cmin 11412 ..^cfzo 13622 ♯chash 14302 Word cword 14485 reversecreverse 14730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-reverse 14731 |
| This theorem is referenced by: revs1 14737 revccat 14738 revrev 14739 revco 14807 revpfxsfxrev 35110 revwlk 35119 |
| Copyright terms: Public domain | W3C validator |