MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswrevw Structured version   Visualization version   GIF version

Theorem repswrevw 14810
Description: The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswrevw ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))

Proof of Theorem repswrevw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14799 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
21oveq2d 7426 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
32mpteq1d 5215 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
4 simpll 766 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝑉)
5 simplr 768 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
61adantr 480 . . . . . . . 8 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
76oveq1d 7425 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((♯‘(𝑆 repeatS 𝑁)) − 1) = (𝑁 − 1))
87oveq1d 7425 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) = ((𝑁 − 1) − 𝑥))
9 ubmelm1fzo 13784 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑁𝑥) − 1) ∈ (0..^𝑁))
10 elfzoelz 13681 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
11 nn0cn 12516 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1211ad2antll 729 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
13 zcn 12598 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑥 ∈ ℂ)
15 1cnd 11235 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1612, 14, 15sub32d 11631 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → ((𝑁𝑥) − 1) = ((𝑁 − 1) − 𝑥))
1716eleq1d 2820 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) ↔ ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1817biimpd 229 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1918ex 412 . . . . . . . . 9 (𝑥 ∈ ℤ → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
2010, 19syl 17 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
219, 20mpid 44 . . . . . . 7 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
2221impcom 407 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))
238, 22eqeltrd 2835 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁))
24 repswsymb 14797 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
254, 5, 23, 24syl3anc 1373 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
2625mpteq2dva 5219 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
273, 26eqtrd 2771 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
28 ovex 7443 . . 3 (𝑆 repeatS 𝑁) ∈ V
29 revval 14783 . . 3 ((𝑆 repeatS 𝑁) ∈ V → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
3028, 29mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
31 reps 14793 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3227, 30, 313eqtr4d 2781 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135  cmin 11471  0cn0 12506  cz 12593  ..^cfzo 13676  chash 14353  reversecreverse 14781   repeatS creps 14791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-reverse 14782  df-reps 14792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator