MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswrevw Structured version   Visualization version   GIF version

Theorem repswrevw 14498
Description: The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswrevw ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))

Proof of Theorem repswrevw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14487 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
21oveq2d 7287 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
32mpteq1d 5174 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
4 simpll 764 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝑉)
5 simplr 766 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
61adantr 481 . . . . . . . 8 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
76oveq1d 7286 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((♯‘(𝑆 repeatS 𝑁)) − 1) = (𝑁 − 1))
87oveq1d 7286 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) = ((𝑁 − 1) − 𝑥))
9 ubmelm1fzo 13481 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑁𝑥) − 1) ∈ (0..^𝑁))
10 elfzoelz 13386 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
11 nn0cn 12243 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1211ad2antll 726 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
13 zcn 12324 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑥 ∈ ℂ)
15 1cnd 10971 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1612, 14, 15sub32d 11364 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → ((𝑁𝑥) − 1) = ((𝑁 − 1) − 𝑥))
1716eleq1d 2825 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) ↔ ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1817biimpd 228 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1918ex 413 . . . . . . . . 9 (𝑥 ∈ ℤ → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
2010, 19syl 17 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
219, 20mpid 44 . . . . . . 7 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
2221impcom 408 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))
238, 22eqeltrd 2841 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁))
24 repswsymb 14485 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
254, 5, 23, 24syl3anc 1370 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
2625mpteq2dva 5179 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
273, 26eqtrd 2780 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
28 ovex 7304 . . 3 (𝑆 repeatS 𝑁) ∈ V
29 revval 14471 . . 3 ((𝑆 repeatS 𝑁) ∈ V → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
3028, 29mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
31 reps 14481 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3227, 30, 313eqtr4d 2790 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  cmpt 5162  cfv 6432  (class class class)co 7271  cc 10870  0cc0 10872  1c1 10873  cmin 11205  0cn0 12233  cz 12319  ..^cfzo 13381  chash 14042  reversecreverse 14469   repeatS creps 14479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-hash 14043  df-reverse 14470  df-reps 14480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator