MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswrevw Structured version   Visualization version   GIF version

Theorem repswrevw 14752
Description: The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswrevw ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))

Proof of Theorem repswrevw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14741 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
21oveq2d 7403 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
32mpteq1d 5197 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
4 simpll 766 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝑉)
5 simplr 768 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
61adantr 480 . . . . . . . 8 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
76oveq1d 7402 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((♯‘(𝑆 repeatS 𝑁)) − 1) = (𝑁 − 1))
87oveq1d 7402 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) = ((𝑁 − 1) − 𝑥))
9 ubmelm1fzo 13724 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑁𝑥) − 1) ∈ (0..^𝑁))
10 elfzoelz 13620 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
11 nn0cn 12452 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1211ad2antll 729 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
13 zcn 12534 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑥 ∈ ℂ)
15 1cnd 11169 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1612, 14, 15sub32d 11565 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → ((𝑁𝑥) − 1) = ((𝑁 − 1) − 𝑥))
1716eleq1d 2813 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) ↔ ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1817biimpd 229 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1918ex 412 . . . . . . . . 9 (𝑥 ∈ ℤ → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
2010, 19syl 17 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
219, 20mpid 44 . . . . . . 7 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
2221impcom 407 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))
238, 22eqeltrd 2828 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁))
24 repswsymb 14739 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
254, 5, 23, 24syl3anc 1373 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
2625mpteq2dva 5200 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
273, 26eqtrd 2764 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
28 ovex 7420 . . 3 (𝑆 repeatS 𝑁) ∈ V
29 revval 14725 . . 3 ((𝑆 repeatS 𝑁) ∈ V → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
3028, 29mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
31 reps 14735 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3227, 30, 313eqtr4d 2774 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  cmin 11405  0cn0 12442  cz 12529  ..^cfzo 13615  chash 14295  reversecreverse 14723   repeatS creps 14733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-reverse 14724  df-reps 14734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator