MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revco Structured version   Visualization version   GIF version

Theorem revco 14287
Description: Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
revco ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))

Proof of Theorem revco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrdfn 13971 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
21ad2antrr 726 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
3 lencl 13976 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12168 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
5 fzoval 13132 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
64, 5syl 17 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
76adantr 484 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
87eleq2d 2818 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
98biimpa 480 . . . . . . . 8 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
10 fznn0sub2 13107 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
119, 10syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
127adantr 484 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
1311, 12eleqtrrd 2836 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
14 fvco2 6767 . . . . . 6 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
152, 13, 14syl2anc 587 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
16 lenco 14285 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1716oveq1d 7187 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑊)) − 1) = ((♯‘𝑊) − 1))
1817oveq1d 7187 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
1918adantr 484 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
2019fveq2d 6680 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
21 revfv 14216 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2221adantlr 715 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2322fveq2d 6680 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐹‘((reverse‘𝑊)‘𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
2415, 20, 233eqtr4d 2783 . . . 4 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = (𝐹‘((reverse‘𝑊)‘𝑥)))
2524mpteq2dva 5125 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
2616oveq2d 7188 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
2726mpteq1d 5119 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
28 revlen 14215 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
2928adantr 484 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
3029oveq2d 7188 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
3130mpteq1d 5119 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3225, 27, 313eqtr4rd 2784 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
33 simpr 488 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
34 revcl 14214 . . . . 5 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
35 wrdf 13962 . . . . 5 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3634, 35syl 17 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3736adantr 484 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
38 fcompt 6907 . . 3 ((𝐹:𝐴𝐵 ∧ (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3933, 37, 38syl2anc 587 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
40 ffun 6507 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
41 simpl 486 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑊 ∈ Word 𝐴)
42 cofunexg 7677 . . . 4 ((Fun 𝐹𝑊 ∈ Word 𝐴) → (𝐹𝑊) ∈ V)
4340, 41, 42syl2an2 686 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ V)
44 revval 14213 . . 3 ((𝐹𝑊) ∈ V → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4543, 44syl 17 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4632, 39, 453eqtr4d 2783 1 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  Vcvv 3398  cmpt 5110  ccom 5529  Fun wfun 6333   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7172  0cc0 10617  1c1 10618  cmin 10950  cz 12064  ...cfz 12983  ..^cfzo 13126  chash 13784  Word cword 13957  reversecreverse 14211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-card 9443  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-n0 11979  df-z 12065  df-uz 12327  df-fz 12984  df-fzo 13127  df-hash 13785  df-word 13958  df-reverse 14212
This theorem is referenced by:  efginvrel1  18974
  Copyright terms: Public domain W3C validator