MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revco Structured version   Visualization version   GIF version

Theorem revco 14751
Description: Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
revco ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))

Proof of Theorem revco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrdfn 14445 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
21ad2antrr 726 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
3 lencl 14450 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12504 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
5 fzoval 13570 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
64, 5syl 17 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
76adantr 480 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
87eleq2d 2819 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
98biimpa 476 . . . . . . . 8 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
10 fznn0sub2 13545 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
119, 10syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
127adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
1311, 12eleqtrrd 2836 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
14 fvco2 6928 . . . . . 6 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
152, 13, 14syl2anc 584 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
16 lenco 14749 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1716oveq1d 7370 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑊)) − 1) = ((♯‘𝑊) − 1))
1817oveq1d 7370 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
1918adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
2019fveq2d 6835 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
21 revfv 14680 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2221adantlr 715 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2322fveq2d 6835 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐹‘((reverse‘𝑊)‘𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
2415, 20, 233eqtr4d 2778 . . . 4 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = (𝐹‘((reverse‘𝑊)‘𝑥)))
2524mpteq2dva 5188 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
2616oveq2d 7371 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
2726mpteq1d 5185 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
28 revlen 14679 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
2928adantr 480 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
3029oveq2d 7371 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
3130mpteq1d 5185 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3225, 27, 313eqtr4rd 2779 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
33 simpr 484 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
34 revcl 14678 . . . . 5 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
35 wrdf 14435 . . . . 5 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3634, 35syl 17 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3736adantr 480 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
38 fcompt 7075 . . 3 ((𝐹:𝐴𝐵 ∧ (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3933, 37, 38syl2anc 584 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
40 ffun 6662 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
41 simpl 482 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑊 ∈ Word 𝐴)
42 cofunexg 7890 . . . 4 ((Fun 𝐹𝑊 ∈ Word 𝐴) → (𝐹𝑊) ∈ V)
4340, 41, 42syl2an2 686 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ V)
44 revval 14677 . . 3 ((𝐹𝑊) ∈ V → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4543, 44syl 17 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4632, 39, 453eqtr4d 2778 1 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  cmpt 5176  ccom 5625  Fun wfun 6483   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  0cc0 11016  1c1 11017  cmin 11354  cz 12478  ...cfz 13417  ..^cfzo 13564  chash 14247  Word cword 14430  reversecreverse 14675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-reverse 14676
This theorem is referenced by:  efginvrel1  19650
  Copyright terms: Public domain W3C validator