MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revco Structured version   Visualization version   GIF version

Theorem revco 14883
Description: Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
revco ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))

Proof of Theorem revco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrdfn 14576 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
21ad2antrr 725 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
3 lencl 14581 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12665 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
5 fzoval 13717 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
64, 5syl 17 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
76adantr 480 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
87eleq2d 2830 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
98biimpa 476 . . . . . . . 8 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
10 fznn0sub2 13692 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
119, 10syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
127adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
1311, 12eleqtrrd 2847 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
14 fvco2 7019 . . . . . 6 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
152, 13, 14syl2anc 583 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
16 lenco 14881 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1716oveq1d 7463 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑊)) − 1) = ((♯‘𝑊) − 1))
1817oveq1d 7463 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
1918adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
2019fveq2d 6924 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
21 revfv 14811 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2221adantlr 714 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2322fveq2d 6924 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐹‘((reverse‘𝑊)‘𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
2415, 20, 233eqtr4d 2790 . . . 4 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = (𝐹‘((reverse‘𝑊)‘𝑥)))
2524mpteq2dva 5266 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
2616oveq2d 7464 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
2726mpteq1d 5261 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
28 revlen 14810 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
2928adantr 480 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
3029oveq2d 7464 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
3130mpteq1d 5261 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3225, 27, 313eqtr4rd 2791 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
33 simpr 484 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
34 revcl 14809 . . . . 5 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
35 wrdf 14567 . . . . 5 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3634, 35syl 17 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3736adantr 480 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
38 fcompt 7167 . . 3 ((𝐹:𝐴𝐵 ∧ (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3933, 37, 38syl2anc 583 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
40 ffun 6750 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
41 simpl 482 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑊 ∈ Word 𝐴)
42 cofunexg 7989 . . . 4 ((Fun 𝐹𝑊 ∈ Word 𝐴) → (𝐹𝑊) ∈ V)
4340, 41, 42syl2an2 685 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ V)
44 revval 14808 . . 3 ((𝐹𝑊) ∈ V → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4543, 44syl 17 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4632, 39, 453eqtr4d 2790 1 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  cmin 11520  cz 12639  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  reversecreverse 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-reverse 14807
This theorem is referenced by:  efginvrel1  19770
  Copyright terms: Public domain W3C validator