![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revlen | Structured version Visualization version GIF version |
Description: The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revlen | ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | revval 14808 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
2 | 1 | fveq2d 6924 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))) |
3 | wrdf 14567 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊))) | |
6 | lencl 14581 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0) | |
7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ0) |
8 | nn0z 12664 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ) | |
9 | fzoval 13717 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
11 | 5, 10 | eleqtrd 2846 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1))) |
12 | fznn0sub2 13692 | . . . . . . 7 ⊢ (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) |
14 | 13, 10 | eleqtrrd 2847 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) |
15 | 4, 14 | ffvelcdmd 7119 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) ∈ 𝐴) |
16 | 15 | fmpttd 7149 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴) |
17 | ffn 6747 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊))) | |
18 | hashfn 14424 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊)) → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) | |
19 | 16, 17, 18 | 3syl 18 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) |
20 | hashfzo0 14479 | . . 3 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
21 | 6, 20 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
22 | 2, 19, 21 | 3eqtrd 2784 | 1 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 − cmin 11520 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 reversecreverse 14806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-reverse 14807 |
This theorem is referenced by: rev0 14812 revs1 14813 revccat 14814 revrev 14815 revco 14883 psgnuni 19541 revpfxsfxrev 35083 swrdrevpfx 35084 revwlk 35092 swrdwlk 35094 |
Copyright terms: Public domain | W3C validator |