| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > revlen | Structured version Visualization version GIF version | ||
| Description: The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| revlen | ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval 14732 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
| 2 | 1 | fveq2d 6865 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))) |
| 3 | wrdf 14490 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
| 5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊))) | |
| 6 | lencl 14505 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0) | |
| 7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ0) |
| 8 | nn0z 12561 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ) | |
| 9 | fzoval 13628 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
| 11 | 5, 10 | eleqtrd 2831 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1))) |
| 12 | fznn0sub2 13603 | . . . . . . 7 ⊢ (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) |
| 14 | 13, 10 | eleqtrrd 2832 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) |
| 15 | 4, 14 | ffvelcdmd 7060 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) ∈ 𝐴) |
| 16 | 15 | fmpttd 7090 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴) |
| 17 | ffn 6691 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊))) | |
| 18 | hashfn 14347 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊)) → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) | |
| 19 | 16, 17, 18 | 3syl 18 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) |
| 20 | hashfzo0 14402 | . . 3 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
| 21 | 6, 20 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
| 22 | 2, 19, 21 | 3eqtrd 2769 | 1 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 − cmin 11412 ℕ0cn0 12449 ℤcz 12536 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Word cword 14485 reversecreverse 14730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-reverse 14731 |
| This theorem is referenced by: rev0 14736 revs1 14737 revccat 14738 revrev 14739 revco 14807 psgnuni 19436 revpfxsfxrev 35110 swrdrevpfx 35111 revwlk 35119 swrdwlk 35121 |
| Copyright terms: Public domain | W3C validator |