![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revlen | Structured version Visualization version GIF version |
Description: The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revlen | ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | revval 14692 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
2 | 1 | fveq2d 6882 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))) |
3 | wrdf 14451 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
5 | simpr 485 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊))) | |
6 | lencl 14465 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0) | |
7 | 6 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ0) |
8 | nn0z 12565 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ) | |
9 | fzoval 13615 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
11 | 5, 10 | eleqtrd 2834 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1))) |
12 | fznn0sub2 13590 | . . . . . . 7 ⊢ (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) |
14 | 13, 10 | eleqtrrd 2835 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) |
15 | 4, 14 | ffvelcdmd 7072 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) ∈ 𝐴) |
16 | 15 | fmpttd 7099 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴) |
17 | ffn 6704 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊))) | |
18 | hashfn 14317 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊)) → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) | |
19 | 16, 17, 18 | 3syl 18 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) |
20 | hashfzo0 14372 | . . 3 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
21 | 6, 20 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
22 | 2, 19, 21 | 3eqtrd 2775 | 1 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5224 Fn wfn 6527 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 0cc0 11092 1c1 11093 − cmin 11426 ℕ0cn0 12454 ℤcz 12540 ...cfz 13466 ..^cfzo 13609 ♯chash 14272 Word cword 14446 reversecreverse 14690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-fzo 13610 df-hash 14273 df-word 14447 df-reverse 14691 |
This theorem is referenced by: rev0 14696 revs1 14697 revccat 14698 revrev 14699 revco 14767 psgnuni 19331 revpfxsfxrev 33935 swrdrevpfx 33936 revwlk 33944 swrdwlk 33946 |
Copyright terms: Public domain | W3C validator |