Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcval | Structured version Visualization version GIF version |
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
ringcval.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
ringcval.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
ringcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcval.c | . 2 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | df-ringc 45532 | . . 3 ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | |
3 | fveq2 6771 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
4 | 3 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
5 | ineq1 4145 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring)) | |
6 | 5 | sqxpeqd 5622 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
7 | ringcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
8 | 7 | sqxpeqd 5622 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
9 | 8 | eqcomd 2746 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵)) |
10 | 6, 9 | sylan9eqr 2802 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵)) |
11 | 10 | reseq2d 5890 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵))) |
12 | ringcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
13 | 12 | eqcomd 2746 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
15 | 11, 14 | eqtrd 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻) |
16 | 4, 15 | oveq12d 7289 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
17 | ringcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
18 | 17 | elexd 3451 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
19 | ovexd 7306 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
20 | 2, 16, 18, 19 | fvmptd2 6880 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
21 | 1, 20 | eqtrid 2792 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∩ cin 3891 × cxp 5588 ↾ cres 5592 ‘cfv 6432 (class class class)co 7271 ↾cat cresc 17518 ExtStrCatcestrc 17836 Ringcrg 19781 RingHom crh 19954 RingCatcringc 45530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-res 5602 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7274 df-ringc 45532 |
This theorem is referenced by: ringcbas 45538 ringchomfval 45539 ringccofval 45543 dfringc2 45545 ringccat 45551 ringcid 45552 funcringcsetc 45562 |
Copyright terms: Public domain | W3C validator |