MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcval Structured version   Visualization version   GIF version

Theorem ringcval 20647
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
ringcval.c 𝐶 = (RingCat‘𝑈)
ringcval.u (𝜑𝑈𝑉)
ringcval.b (𝜑𝐵 = (𝑈 ∩ Ring))
ringcval.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
ringcval (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))

Proof of Theorem ringcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ringcval.c . 2 𝐶 = (RingCat‘𝑈)
2 df-ringc 20646 . . 3 RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
3 fveq2 6906 . . . . 5 (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
43adantl 481 . . . 4 ((𝜑𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
5 ineq1 4213 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring))
65sqxpeqd 5717 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
7 ringcval.b . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Ring))
87sqxpeqd 5717 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
98eqcomd 2743 . . . . . . 7 (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵))
106, 9sylan9eqr 2799 . . . . . 6 ((𝜑𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵))
1110reseq2d 5997 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵)))
12 ringcval.h . . . . . . 7 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
1312eqcomd 2743 . . . . . 6 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1413adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1511, 14eqtrd 2777 . . . 4 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻)
164, 15oveq12d 7449 . . 3 ((𝜑𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
17 ringcval.u . . . 4 (𝜑𝑈𝑉)
1817elexd 3504 . . 3 (𝜑𝑈 ∈ V)
19 ovexd 7466 . . 3 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V)
202, 16, 18, 19fvmptd2 7024 . 2 (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
211, 20eqtrid 2789 1 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950   × cxp 5683  cres 5687  cfv 6561  (class class class)co 7431  cat cresc 17852  ExtStrCatcestrc 18166  Ringcrg 20230   RingHom crh 20469  RingCatcringc 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-ringc 20646
This theorem is referenced by:  ringcbas  20650  ringchomfval  20651  ringccofval  20655  dfringc2  20657  ringccat  20663  ringcid  20664  funcringcsetc  20674
  Copyright terms: Public domain W3C validator