| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcval | Structured version Visualization version GIF version | ||
| Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| ringcval.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| ringcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| ringcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| ringcval.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| ringcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcval.c | . 2 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 2 | df-ringc 20549 | . . 3 ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | |
| 3 | fveq2 6826 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
| 5 | ineq1 4166 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring)) | |
| 6 | 5 | sqxpeqd 5655 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
| 7 | ringcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
| 8 | 7 | sqxpeqd 5655 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
| 9 | 8 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵)) |
| 10 | 6, 9 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵)) |
| 11 | 10 | reseq2d 5934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵))) |
| 12 | ringcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 13 | 12 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
| 15 | 11, 14 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻) |
| 16 | 4, 15 | oveq12d 7371 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 17 | ringcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 18 | 17 | elexd 3462 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
| 19 | ovexd 7388 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
| 20 | 2, 16, 18, 19 | fvmptd2 6942 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 21 | 1, 20 | eqtrid 2776 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ↾cat cresc 17733 ExtStrCatcestrc 18046 Ringcrg 20136 RingHom crh 20372 RingCatcringc 20548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-ringc 20549 |
| This theorem is referenced by: ringcbas 20553 ringchomfval 20554 ringccofval 20558 dfringc2 20560 ringccat 20566 ringcid 20567 funcringcsetc 20577 |
| Copyright terms: Public domain | W3C validator |