MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcval Structured version   Visualization version   GIF version

Theorem ringcval 20560
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
ringcval.c 𝐶 = (RingCat‘𝑈)
ringcval.u (𝜑𝑈𝑉)
ringcval.b (𝜑𝐵 = (𝑈 ∩ Ring))
ringcval.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
ringcval (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))

Proof of Theorem ringcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ringcval.c . 2 𝐶 = (RingCat‘𝑈)
2 df-ringc 20559 . . 3 RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
3 fveq2 6822 . . . . 5 (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
43adantl 481 . . . 4 ((𝜑𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
5 ineq1 4163 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring))
65sqxpeqd 5648 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
7 ringcval.b . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Ring))
87sqxpeqd 5648 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
98eqcomd 2737 . . . . . . 7 (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵))
106, 9sylan9eqr 2788 . . . . . 6 ((𝜑𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵))
1110reseq2d 5928 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵)))
12 ringcval.h . . . . . . 7 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
1312eqcomd 2737 . . . . . 6 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1413adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1511, 14eqtrd 2766 . . . 4 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻)
164, 15oveq12d 7364 . . 3 ((𝜑𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
17 ringcval.u . . . 4 (𝜑𝑈𝑉)
1817elexd 3460 . . 3 (𝜑𝑈 ∈ V)
19 ovexd 7381 . . 3 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V)
202, 16, 18, 19fvmptd2 6937 . 2 (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
211, 20eqtrid 2778 1 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901   × cxp 5614  cres 5618  cfv 6481  (class class class)co 7346  cat cresc 17712  ExtStrCatcestrc 18025  Ringcrg 20149   RingHom crh 20385  RingCatcringc 20558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-ringc 20559
This theorem is referenced by:  ringcbas  20563  ringchomfval  20564  ringccofval  20568  dfringc2  20570  ringccat  20576  ringcid  20577  funcringcsetc  20587
  Copyright terms: Public domain W3C validator