Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcval Structured version   Visualization version   GIF version

Theorem ringcval 45518
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
ringcval.c 𝐶 = (RingCat‘𝑈)
ringcval.u (𝜑𝑈𝑉)
ringcval.b (𝜑𝐵 = (𝑈 ∩ Ring))
ringcval.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
ringcval (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))

Proof of Theorem ringcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ringcval.c . 2 𝐶 = (RingCat‘𝑈)
2 df-ringc 45515 . . 3 RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
3 fveq2 6768 . . . . 5 (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
43adantl 481 . . . 4 ((𝜑𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
5 ineq1 4144 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring))
65sqxpeqd 5620 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
7 ringcval.b . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Ring))
87sqxpeqd 5620 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
98eqcomd 2745 . . . . . . 7 (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵))
106, 9sylan9eqr 2801 . . . . . 6 ((𝜑𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵))
1110reseq2d 5888 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵)))
12 ringcval.h . . . . . . 7 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
1312eqcomd 2745 . . . . . 6 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1413adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1511, 14eqtrd 2779 . . . 4 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻)
164, 15oveq12d 7286 . . 3 ((𝜑𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
17 ringcval.u . . . 4 (𝜑𝑈𝑉)
1817elexd 3450 . . 3 (𝜑𝑈 ∈ V)
19 ovexd 7303 . . 3 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V)
202, 16, 18, 19fvmptd2 6877 . 2 (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
211, 20eqtrid 2791 1 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cin 3890   × cxp 5586  cres 5590  cfv 6430  (class class class)co 7268  cat cresc 17501  ExtStrCatcestrc 17819  Ringcrg 19764   RingHom crh 19937  RingCatcringc 45513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-res 5600  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-ringc 45515
This theorem is referenced by:  ringcbas  45521  ringchomfval  45522  ringccofval  45526  dfringc2  45528  ringccat  45534  ringcid  45535  funcringcsetc  45545
  Copyright terms: Public domain W3C validator