| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcval | Structured version Visualization version GIF version | ||
| Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| ringcval.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| ringcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| ringcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| ringcval.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| ringcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcval.c | . 2 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 2 | df-ringc 20604 | . . 3 ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | |
| 3 | fveq2 6875 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
| 5 | ineq1 4188 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring)) | |
| 6 | 5 | sqxpeqd 5686 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
| 7 | ringcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
| 8 | 7 | sqxpeqd 5686 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
| 9 | 8 | eqcomd 2741 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵)) |
| 10 | 6, 9 | sylan9eqr 2792 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵)) |
| 11 | 10 | reseq2d 5966 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵))) |
| 12 | ringcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 13 | 12 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
| 15 | 11, 14 | eqtrd 2770 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻) |
| 16 | 4, 15 | oveq12d 7421 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 17 | ringcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 18 | 17 | elexd 3483 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
| 19 | ovexd 7438 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
| 20 | 2, 16, 18, 19 | fvmptd2 6993 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 21 | 1, 20 | eqtrid 2782 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 × cxp 5652 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 ↾cat cresc 17819 ExtStrCatcestrc 18132 Ringcrg 20191 RingHom crh 20427 RingCatcringc 20603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-ringc 20604 |
| This theorem is referenced by: ringcbas 20608 ringchomfval 20609 ringccofval 20613 dfringc2 20615 ringccat 20621 ringcid 20622 funcringcsetc 20632 |
| Copyright terms: Public domain | W3C validator |