MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcval Structured version   Visualization version   GIF version

Theorem ringcval 20669
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
ringcval.c 𝐶 = (RingCat‘𝑈)
ringcval.u (𝜑𝑈𝑉)
ringcval.b (𝜑𝐵 = (𝑈 ∩ Ring))
ringcval.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
ringcval (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))

Proof of Theorem ringcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ringcval.c . 2 𝐶 = (RingCat‘𝑈)
2 df-ringc 20668 . . 3 RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
3 fveq2 6920 . . . . 5 (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
43adantl 481 . . . 4 ((𝜑𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
5 ineq1 4234 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring))
65sqxpeqd 5732 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
7 ringcval.b . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Ring))
87sqxpeqd 5732 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
98eqcomd 2746 . . . . . . 7 (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵))
106, 9sylan9eqr 2802 . . . . . 6 ((𝜑𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵))
1110reseq2d 6009 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵)))
12 ringcval.h . . . . . . 7 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
1312eqcomd 2746 . . . . . 6 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1413adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻)
1511, 14eqtrd 2780 . . . 4 ((𝜑𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻)
164, 15oveq12d 7466 . . 3 ((𝜑𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
17 ringcval.u . . . 4 (𝜑𝑈𝑉)
1817elexd 3512 . . 3 (𝜑𝑈 ∈ V)
19 ovexd 7483 . . 3 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V)
202, 16, 18, 19fvmptd2 7037 . 2 (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
211, 20eqtrid 2792 1 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975   × cxp 5698  cres 5702  cfv 6573  (class class class)co 7448  cat cresc 17869  ExtStrCatcestrc 18190  Ringcrg 20260   RingHom crh 20495  RingCatcringc 20667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-ringc 20668
This theorem is referenced by:  ringcbas  20672  ringchomfval  20673  ringccofval  20677  dfringc2  20679  ringccat  20685  ringcid  20686  funcringcsetc  20696
  Copyright terms: Public domain W3C validator