![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringccofval | Structured version Visualization version GIF version |
Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
ringcco.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcco.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcco.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
ringccofval | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcco.c | . . . 4 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | ringcco.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqid 2732 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | 1, 3, 2 | ringcbas 46899 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
5 | eqid 2732 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | 1, 3, 2, 5 | ringchomfval 46900 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
7 | 1, 2, 4, 6 | ringcval 46896 | . . 3 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶))) |
8 | 7 | fveq2d 6895 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
9 | ringcco.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → · = (comp‘𝐶)) |
11 | eqid 2732 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) | |
12 | eqid 2732 | . . 3 ⊢ (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) | |
13 | fvexd 6906 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
14 | 4, 6 | rhmresfn 46897 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
15 | inss1 4228 | . . . . 5 ⊢ (𝑈 ∩ Ring) ⊆ 𝑈 | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ 𝑈) |
17 | eqid 2732 | . . . . . 6 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
18 | 17, 2 | estrcbas 18075 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
19 | 18 | eqcomd 2738 | . . . 4 ⊢ (𝜑 → (Base‘(ExtStrCat‘𝑈)) = 𝑈) |
20 | 16, 4, 19 | 3sstr4d 4029 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ (Base‘(ExtStrCat‘𝑈))) |
21 | eqid 2732 | . . 3 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
22 | 11, 12, 13, 14, 20, 21 | rescco 17779 | . 2 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
23 | 8, 10, 22 | 3eqtr4d 2782 | 1 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 Hom chom 17207 compcco 17208 ↾cat cresc 17754 ExtStrCatcestrc 18072 Ringcrg 20055 RingCatcringc 46891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-hom 17220 df-cco 17221 df-0g 17386 df-resc 17757 df-estrc 18073 df-mhm 18670 df-ghm 19089 df-mgp 19987 df-ur 20004 df-ring 20057 df-rnghom 20250 df-ringc 46893 |
This theorem is referenced by: ringcco 46905 |
Copyright terms: Public domain | W3C validator |