| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringccofval | Structured version Visualization version GIF version | ||
| Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| ringcco.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| ringcco.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| ringcco.o | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| ringccofval | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcco.c | . . . 4 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 2 | ringcco.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | 1, 3, 2 | ringcbas 20615 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
| 5 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 1, 3, 2, 5 | ringchomfval 20616 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 7 | 1, 2, 4, 6 | ringcval 20612 | . . 3 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶))) |
| 8 | 7 | fveq2d 6885 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
| 9 | ringcco.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → · = (comp‘𝐶)) |
| 11 | eqid 2736 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) | |
| 12 | eqid 2736 | . . 3 ⊢ (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) | |
| 13 | fvexd 6896 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
| 14 | 4, 6 | rhmresfn 20613 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 15 | inss1 4217 | . . . . 5 ⊢ (𝑈 ∩ Ring) ⊆ 𝑈 | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ 𝑈) |
| 17 | eqid 2736 | . . . . . 6 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 18 | 17, 2 | estrcbas 18142 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
| 19 | 18 | eqcomd 2742 | . . . 4 ⊢ (𝜑 → (Base‘(ExtStrCat‘𝑈)) = 𝑈) |
| 20 | 16, 4, 19 | 3sstr4d 4019 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ (Base‘(ExtStrCat‘𝑈))) |
| 21 | eqid 2736 | . . 3 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
| 22 | 11, 12, 13, 14, 20, 21 | rescco 17850 | . 2 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
| 23 | 8, 10, 22 | 3eqtr4d 2781 | 1 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 compcco 17288 ↾cat cresc 17826 ExtStrCatcestrc 18139 Ringcrg 20198 RingCatcringc 20610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-hom 17300 df-cco 17301 df-0g 17460 df-resc 17829 df-estrc 18140 df-mhm 18766 df-ghm 19201 df-mgp 20106 df-ur 20147 df-ring 20200 df-rhm 20437 df-ringc 20611 |
| This theorem is referenced by: ringcco 20621 |
| Copyright terms: Public domain | W3C validator |