Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcid Structured version   Visualization version   GIF version

Theorem ringcid 44647
Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.)
Hypotheses
Ref Expression
ringccat.c 𝐶 = (RingCat‘𝑈)
ringcid.b 𝐵 = (Base‘𝐶)
ringcid.o 1 = (Id‘𝐶)
ringcid.u (𝜑𝑈𝑉)
ringcid.x (𝜑𝑋𝐵)
ringcid.s 𝑆 = (Base‘𝑋)
Assertion
Ref Expression
ringcid (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))

Proof of Theorem ringcid
StepHypRef Expression
1 ringcid.o . . . 4 1 = (Id‘𝐶)
2 ringccat.c . . . . . 6 𝐶 = (RingCat‘𝑈)
3 ringcid.u . . . . . 6 (𝜑𝑈𝑉)
4 eqidd 2799 . . . . . 6 (𝜑 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring))
5 eqidd 2799 . . . . . 6 (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))
62, 3, 4, 5ringcval 44630 . . . . 5 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))
76fveq2d 6649 . . . 4 (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))))
81, 7syl5eq 2845 . . 3 (𝜑1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))))
98fveq1d 6647 . 2 (𝜑 → ( 1𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋))
10 eqid 2798 . . 3 ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))
11 eqid 2798 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
12 incom 4128 . . . . 5 (𝑈 ∩ Ring) = (Ring ∩ 𝑈)
1312a1i 11 . . . 4 (𝜑 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈))
1411, 3, 13, 5rhmsubcsetc 44645 . . 3 (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈)))
154, 5rhmresfn 44631 . . 3 (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
16 eqid 2798 . . 3 (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈))
17 ringcid.x . . . 4 (𝜑𝑋𝐵)
18 ringcid.b . . . . . 6 𝐵 = (Base‘𝐶)
192, 18, 3ringcbas 44633 . . . . 5 (𝜑𝐵 = (𝑈 ∩ Ring))
2019eleq2d 2875 . . . 4 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Ring)))
2117, 20mpbid 235 . . 3 (𝜑𝑋 ∈ (𝑈 ∩ Ring))
2210, 14, 15, 16, 21subcid 17109 . 2 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋))
23 elinel1 4122 . . . . . 6 (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋𝑈)
2420, 23syl6bi 256 . . . . 5 (𝜑 → (𝑋𝐵𝑋𝑈))
2517, 24mpd 15 . . . 4 (𝜑𝑋𝑈)
2611, 16, 3, 25estrcid 17376 . . 3 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋)))
27 ringcid.s . . . . . 6 𝑆 = (Base‘𝑋)
2827eqcomi 2807 . . . . 5 (Base‘𝑋) = 𝑆
2928a1i 11 . . . 4 (𝜑 → (Base‘𝑋) = 𝑆)
3029reseq2d 5818 . . 3 (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆))
3126, 30eqtrd 2833 . 2 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆))
329, 22, 313eqtr2d 2839 1 (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cin 3880   I cid 5424   × cxp 5517  cres 5521  cfv 6324  (class class class)co 7135  Basecbs 16475  Idccid 16928  cat cresc 17070  ExtStrCatcestrc 17364  Ringcrg 19290   RingHom crh 19460  RingCatcringc 44625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-hom 16581  df-cco 16582  df-0g 16707  df-cat 16931  df-cid 16932  df-homf 16933  df-ssc 17072  df-resc 17073  df-subc 17074  df-estrc 17365  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-rnghom 19463  df-ringc 44627
This theorem is referenced by:  ringcsect  44653  funcringcsetcALTV2lem7  44664  srhmsubc  44698
  Copyright terms: Public domain W3C validator