![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
ringccat.c | β’ πΆ = (RingCatβπ) |
ringcid.b | β’ π΅ = (BaseβπΆ) |
ringcid.o | β’ 1 = (IdβπΆ) |
ringcid.u | β’ (π β π β π) |
ringcid.x | β’ (π β π β π΅) |
ringcid.s | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
ringcid | β’ (π β ( 1 βπ) = ( I βΎ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcid.o | . . . 4 β’ 1 = (IdβπΆ) | |
2 | ringccat.c | . . . . . 6 β’ πΆ = (RingCatβπ) | |
3 | ringcid.u | . . . . . 6 β’ (π β π β π) | |
4 | eqidd 2727 | . . . . . 6 β’ (π β (π β© Ring) = (π β© Ring)) | |
5 | eqidd 2727 | . . . . . 6 β’ (π β ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))) = ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))) | |
6 | 2, 3, 4, 5 | ringcval 20540 | . . . . 5 β’ (π β πΆ = ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))))) |
7 | 6 | fveq2d 6888 | . . . 4 β’ (π β (IdβπΆ) = (Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))) |
8 | 1, 7 | eqtrid 2778 | . . 3 β’ (π β 1 = (Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))) |
9 | 8 | fveq1d 6886 | . 2 β’ (π β ( 1 βπ) = ((Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))βπ)) |
10 | eqid 2726 | . . 3 β’ ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))) = ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))) | |
11 | eqid 2726 | . . . 4 β’ (ExtStrCatβπ) = (ExtStrCatβπ) | |
12 | incom 4196 | . . . . 5 β’ (π β© Ring) = (Ring β© π) | |
13 | 12 | a1i 11 | . . . 4 β’ (π β (π β© Ring) = (Ring β© π)) |
14 | 11, 3, 13, 5 | rhmsubcsetc 20555 | . . 3 β’ (π β ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))) β (Subcatβ(ExtStrCatβπ))) |
15 | 4, 5 | rhmresfn 20541 | . . 3 β’ (π β ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))) Fn ((π β© Ring) Γ (π β© Ring))) |
16 | eqid 2726 | . . 3 β’ (Idβ(ExtStrCatβπ)) = (Idβ(ExtStrCatβπ)) | |
17 | ringcid.x | . . . 4 β’ (π β π β π΅) | |
18 | ringcid.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
19 | 2, 18, 3 | ringcbas 20543 | . . . . 5 β’ (π β π΅ = (π β© Ring)) |
20 | 19 | eleq2d 2813 | . . . 4 β’ (π β (π β π΅ β π β (π β© Ring))) |
21 | 17, 20 | mpbid 231 | . . 3 β’ (π β π β (π β© Ring)) |
22 | 10, 14, 15, 16, 21 | subcid 17803 | . 2 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ((Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))βπ)) |
23 | elinel1 4190 | . . . . . 6 β’ (π β (π β© Ring) β π β π) | |
24 | 20, 23 | biimtrdi 252 | . . . . 5 β’ (π β (π β π΅ β π β π)) |
25 | 17, 24 | mpd 15 | . . . 4 β’ (π β π β π) |
26 | 11, 16, 3, 25 | estrcid 18094 | . . 3 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ( I βΎ (Baseβπ))) |
27 | ringcid.s | . . . . . 6 β’ π = (Baseβπ) | |
28 | 27 | eqcomi 2735 | . . . . 5 β’ (Baseβπ) = π |
29 | 28 | a1i 11 | . . . 4 β’ (π β (Baseβπ) = π) |
30 | 29 | reseq2d 5974 | . . 3 β’ (π β ( I βΎ (Baseβπ)) = ( I βΎ π)) |
31 | 26, 30 | eqtrd 2766 | . 2 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ( I βΎ π)) |
32 | 9, 22, 31 | 3eqtr2d 2772 | 1 β’ (π β ( 1 βπ) = ( I βΎ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β© cin 3942 I cid 5566 Γ cxp 5667 βΎ cres 5671 βcfv 6536 (class class class)co 7404 Basecbs 17150 Idccid 17615 βΎcat cresc 17761 ExtStrCatcestrc 18082 Ringcrg 20135 RingHom crh 20368 RingCatcringc 20538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-hom 17227 df-cco 17228 df-0g 17393 df-cat 17618 df-cid 17619 df-homf 17620 df-ssc 17763 df-resc 17764 df-subc 17765 df-estrc 18083 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-mhm 18710 df-grp 18863 df-ghm 19136 df-mgp 20037 df-ur 20084 df-ring 20137 df-rhm 20371 df-ringc 20539 |
This theorem is referenced by: ringcsect 20563 srhmsubc 20573 funcringcsetcALTV2lem7 47228 |
Copyright terms: Public domain | W3C validator |