| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcid | Structured version Visualization version GIF version | ||
| Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
| Ref | Expression |
|---|---|
| ringccat.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| ringcid.b | ⊢ 𝐵 = (Base‘𝐶) |
| ringcid.o | ⊢ 1 = (Id‘𝐶) |
| ringcid.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| ringcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringcid.s | ⊢ 𝑆 = (Base‘𝑋) |
| Ref | Expression |
|---|---|
| ringcid | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcid.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 2 | ringccat.c | . . . . . 6 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 3 | ringcid.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring)) | |
| 5 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
| 6 | 2, 3, 4, 5 | ringcval 20532 | . . . . 5 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))) |
| 7 | 6 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
| 8 | 1, 7 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
| 9 | 8 | fveq1d 6842 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
| 10 | eqid 2729 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
| 11 | eqid 2729 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 12 | incom 4168 | . . . . 5 ⊢ (𝑈 ∩ Ring) = (Ring ∩ 𝑈) | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈)) |
| 14 | 11, 3, 13, 5 | rhmsubcsetc 20547 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
| 15 | 4, 5 | rhmresfn 20533 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
| 16 | eqid 2729 | . . 3 ⊢ (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈)) | |
| 17 | ringcid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | ringcid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 19 | 2, 18, 3 | ringcbas 20535 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 20 | 19 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
| 21 | 17, 20 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Ring)) |
| 22 | 10, 14, 15, 16, 21 | subcid 17785 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
| 23 | elinel1 4160 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ 𝑈) | |
| 24 | 20, 23 | biimtrdi 253 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈)) |
| 25 | 17, 24 | mpd 15 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 26 | 11, 16, 3, 25 | estrcid 18071 | . . 3 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋))) |
| 27 | ringcid.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝑋) | |
| 28 | 27 | eqcomi 2738 | . . . . 5 ⊢ (Base‘𝑋) = 𝑆 |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑋) = 𝑆) |
| 30 | 29 | reseq2d 5939 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆)) |
| 31 | 26, 30 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆)) |
| 32 | 9, 22, 31 | 3eqtr2d 2770 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 I cid 5525 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Idccid 17602 ↾cat cresc 17746 ExtStrCatcestrc 18059 Ringcrg 20118 RingHom crh 20354 RingCatcringc 20530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-hom 17220 df-cco 17221 df-0g 17380 df-cat 17605 df-cid 17606 df-homf 17607 df-ssc 17748 df-resc 17749 df-subc 17750 df-estrc 18060 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-ghm 19121 df-mgp 20026 df-ur 20067 df-ring 20120 df-rhm 20357 df-ringc 20531 |
| This theorem is referenced by: ringcsect 20555 srhmsubc 20565 funcringcsetcALTV2lem7 48257 |
| Copyright terms: Public domain | W3C validator |