![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
ringccat.c | β’ πΆ = (RingCatβπ) |
ringcid.b | β’ π΅ = (BaseβπΆ) |
ringcid.o | β’ 1 = (IdβπΆ) |
ringcid.u | β’ (π β π β π) |
ringcid.x | β’ (π β π β π΅) |
ringcid.s | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
ringcid | β’ (π β ( 1 βπ) = ( I βΎ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcid.o | . . . 4 β’ 1 = (IdβπΆ) | |
2 | ringccat.c | . . . . . 6 β’ πΆ = (RingCatβπ) | |
3 | ringcid.u | . . . . . 6 β’ (π β π β π) | |
4 | eqidd 2733 | . . . . . 6 β’ (π β (π β© Ring) = (π β© Ring)) | |
5 | eqidd 2733 | . . . . . 6 β’ (π β ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))) = ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))) | |
6 | 2, 3, 4, 5 | ringcval 46896 | . . . . 5 β’ (π β πΆ = ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))))) |
7 | 6 | fveq2d 6895 | . . . 4 β’ (π β (IdβπΆ) = (Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))) |
8 | 1, 7 | eqtrid 2784 | . . 3 β’ (π β 1 = (Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))) |
9 | 8 | fveq1d 6893 | . 2 β’ (π β ( 1 βπ) = ((Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))βπ)) |
10 | eqid 2732 | . . 3 β’ ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))) = ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))) | |
11 | eqid 2732 | . . . 4 β’ (ExtStrCatβπ) = (ExtStrCatβπ) | |
12 | incom 4201 | . . . . 5 β’ (π β© Ring) = (Ring β© π) | |
13 | 12 | a1i 11 | . . . 4 β’ (π β (π β© Ring) = (Ring β© π)) |
14 | 11, 3, 13, 5 | rhmsubcsetc 46911 | . . 3 β’ (π β ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))) β (Subcatβ(ExtStrCatβπ))) |
15 | 4, 5 | rhmresfn 46897 | . . 3 β’ (π β ( RingHom βΎ ((π β© Ring) Γ (π β© Ring))) Fn ((π β© Ring) Γ (π β© Ring))) |
16 | eqid 2732 | . . 3 β’ (Idβ(ExtStrCatβπ)) = (Idβ(ExtStrCatβπ)) | |
17 | ringcid.x | . . . 4 β’ (π β π β π΅) | |
18 | ringcid.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
19 | 2, 18, 3 | ringcbas 46899 | . . . . 5 β’ (π β π΅ = (π β© Ring)) |
20 | 19 | eleq2d 2819 | . . . 4 β’ (π β (π β π΅ β π β (π β© Ring))) |
21 | 17, 20 | mpbid 231 | . . 3 β’ (π β π β (π β© Ring)) |
22 | 10, 14, 15, 16, 21 | subcid 17796 | . 2 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ((Idβ((ExtStrCatβπ) βΎcat ( RingHom βΎ ((π β© Ring) Γ (π β© Ring)))))βπ)) |
23 | elinel1 4195 | . . . . . 6 β’ (π β (π β© Ring) β π β π) | |
24 | 20, 23 | syl6bi 252 | . . . . 5 β’ (π β (π β π΅ β π β π)) |
25 | 17, 24 | mpd 15 | . . . 4 β’ (π β π β π) |
26 | 11, 16, 3, 25 | estrcid 18084 | . . 3 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ( I βΎ (Baseβπ))) |
27 | ringcid.s | . . . . . 6 β’ π = (Baseβπ) | |
28 | 27 | eqcomi 2741 | . . . . 5 β’ (Baseβπ) = π |
29 | 28 | a1i 11 | . . . 4 β’ (π β (Baseβπ) = π) |
30 | 29 | reseq2d 5981 | . . 3 β’ (π β ( I βΎ (Baseβπ)) = ( I βΎ π)) |
31 | 26, 30 | eqtrd 2772 | . 2 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ( I βΎ π)) |
32 | 9, 22, 31 | 3eqtr2d 2778 | 1 β’ (π β ( 1 βπ) = ( I βΎ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β© cin 3947 I cid 5573 Γ cxp 5674 βΎ cres 5678 βcfv 6543 (class class class)co 7408 Basecbs 17143 Idccid 17608 βΎcat cresc 17754 ExtStrCatcestrc 18072 Ringcrg 20055 RingHom crh 20247 RingCatcringc 46891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-hom 17220 df-cco 17221 df-0g 17386 df-cat 17611 df-cid 17612 df-homf 17613 df-ssc 17756 df-resc 17757 df-subc 17758 df-estrc 18073 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-grp 18821 df-ghm 19089 df-mgp 19987 df-ur 20004 df-ring 20057 df-rnghom 20250 df-ringc 46893 |
This theorem is referenced by: ringcsect 46919 funcringcsetcALTV2lem7 46930 srhmsubc 46964 |
Copyright terms: Public domain | W3C validator |