Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
ringccat.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcid.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcid.o | ⊢ 1 = (Id‘𝐶) |
ringcid.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcid.s | ⊢ 𝑆 = (Base‘𝑋) |
Ref | Expression |
---|---|
ringcid | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcid.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
2 | ringccat.c | . . . . . 6 ⊢ 𝐶 = (RingCat‘𝑈) | |
3 | ringcid.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring)) | |
5 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
6 | 2, 3, 4, 5 | ringcval 45906 | . . . . 5 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))) |
7 | 6 | fveq2d 6823 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
8 | 1, 7 | eqtrid 2788 | . . 3 ⊢ (𝜑 → 1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
9 | 8 | fveq1d 6821 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
10 | eqid 2736 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
11 | eqid 2736 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
12 | incom 4147 | . . . . 5 ⊢ (𝑈 ∩ Ring) = (Ring ∩ 𝑈) | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈)) |
14 | 11, 3, 13, 5 | rhmsubcsetc 45921 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
15 | 4, 5 | rhmresfn 45907 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
16 | eqid 2736 | . . 3 ⊢ (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈)) | |
17 | ringcid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | ringcid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
19 | 2, 18, 3 | ringcbas 45909 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
20 | 19 | eleq2d 2822 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
21 | 17, 20 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Ring)) |
22 | 10, 14, 15, 16, 21 | subcid 17651 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
23 | elinel1 4141 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ 𝑈) | |
24 | 20, 23 | syl6bi 252 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈)) |
25 | 17, 24 | mpd 15 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
26 | 11, 16, 3, 25 | estrcid 17939 | . . 3 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋))) |
27 | ringcid.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝑋) | |
28 | 27 | eqcomi 2745 | . . . . 5 ⊢ (Base‘𝑋) = 𝑆 |
29 | 28 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑋) = 𝑆) |
30 | 29 | reseq2d 5917 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆)) |
31 | 26, 30 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆)) |
32 | 9, 22, 31 | 3eqtr2d 2782 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∩ cin 3896 I cid 5511 × cxp 5612 ↾ cres 5616 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 Idccid 17463 ↾cat cresc 17609 ExtStrCatcestrc 17927 Ringcrg 19870 RingHom crh 20043 RingCatcringc 45901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-pm 8681 df-ixp 8749 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-hom 17075 df-cco 17076 df-0g 17241 df-cat 17466 df-cid 17467 df-homf 17468 df-ssc 17611 df-resc 17612 df-subc 17613 df-estrc 17928 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-mhm 18519 df-grp 18668 df-ghm 18920 df-mgp 19808 df-ur 19825 df-ring 19872 df-rnghom 20046 df-ringc 45903 |
This theorem is referenced by: ringcsect 45929 funcringcsetcALTV2lem7 45940 srhmsubc 45974 |
Copyright terms: Public domain | W3C validator |