Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
ringccat.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcid.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcid.o | ⊢ 1 = (Id‘𝐶) |
ringcid.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcid.s | ⊢ 𝑆 = (Base‘𝑋) |
Ref | Expression |
---|---|
ringcid | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcid.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
2 | ringccat.c | . . . . . 6 ⊢ 𝐶 = (RingCat‘𝑈) | |
3 | ringcid.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring)) | |
5 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
6 | 2, 3, 4, 5 | ringcval 45454 | . . . . 5 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))) |
7 | 6 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
8 | 1, 7 | syl5eq 2791 | . . 3 ⊢ (𝜑 → 1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
9 | 8 | fveq1d 6758 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
10 | eqid 2738 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
11 | eqid 2738 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
12 | incom 4131 | . . . . 5 ⊢ (𝑈 ∩ Ring) = (Ring ∩ 𝑈) | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈)) |
14 | 11, 3, 13, 5 | rhmsubcsetc 45469 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
15 | 4, 5 | rhmresfn 45455 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
16 | eqid 2738 | . . 3 ⊢ (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈)) | |
17 | ringcid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | ringcid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
19 | 2, 18, 3 | ringcbas 45457 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
20 | 19 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
21 | 17, 20 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Ring)) |
22 | 10, 14, 15, 16, 21 | subcid 17478 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
23 | elinel1 4125 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ 𝑈) | |
24 | 20, 23 | syl6bi 252 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈)) |
25 | 17, 24 | mpd 15 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
26 | 11, 16, 3, 25 | estrcid 17766 | . . 3 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋))) |
27 | ringcid.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝑋) | |
28 | 27 | eqcomi 2747 | . . . . 5 ⊢ (Base‘𝑋) = 𝑆 |
29 | 28 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑋) = 𝑆) |
30 | 29 | reseq2d 5880 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆)) |
31 | 26, 30 | eqtrd 2778 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆)) |
32 | 9, 22, 31 | 3eqtr2d 2784 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 I cid 5479 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Idccid 17291 ↾cat cresc 17437 ExtStrCatcestrc 17754 Ringcrg 19698 RingHom crh 19871 RingCatcringc 45449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-hom 16912 df-cco 16913 df-0g 17069 df-cat 17294 df-cid 17295 df-homf 17296 df-ssc 17439 df-resc 17440 df-subc 17441 df-estrc 17755 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-rnghom 19874 df-ringc 45451 |
This theorem is referenced by: ringcsect 45477 funcringcsetcALTV2lem7 45488 srhmsubc 45522 |
Copyright terms: Public domain | W3C validator |