| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcid | Structured version Visualization version GIF version | ||
| Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
| Ref | Expression |
|---|---|
| ringccat.c | ⊢ 𝐶 = (RingCat‘𝑈) |
| ringcid.b | ⊢ 𝐵 = (Base‘𝐶) |
| ringcid.o | ⊢ 1 = (Id‘𝐶) |
| ringcid.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| ringcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringcid.s | ⊢ 𝑆 = (Base‘𝑋) |
| Ref | Expression |
|---|---|
| ringcid | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcid.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 2 | ringccat.c | . . . . . 6 ⊢ 𝐶 = (RingCat‘𝑈) | |
| 3 | ringcid.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | eqidd 2732 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring)) | |
| 5 | eqidd 2732 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
| 6 | 2, 3, 4, 5 | ringcval 20562 | . . . . 5 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))) |
| 7 | 6 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
| 8 | 1, 7 | eqtrid 2778 | . . 3 ⊢ (𝜑 → 1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))) |
| 9 | 8 | fveq1d 6824 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
| 10 | eqid 2731 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
| 11 | eqid 2731 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 12 | incom 4156 | . . . . 5 ⊢ (𝑈 ∩ Ring) = (Ring ∩ 𝑈) | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈)) |
| 14 | 11, 3, 13, 5 | rhmsubcsetc 20577 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
| 15 | 4, 5 | rhmresfn 20563 | . . 3 ⊢ (𝜑 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
| 16 | eqid 2731 | . . 3 ⊢ (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈)) | |
| 17 | ringcid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | ringcid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 19 | 2, 18, 3 | ringcbas 20565 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 20 | 19 | eleq2d 2817 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Ring))) |
| 21 | 17, 20 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Ring)) |
| 22 | 10, 14, 15, 16, 21 | subcid 17754 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))‘𝑋)) |
| 23 | elinel1 4148 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Ring) → 𝑋 ∈ 𝑈) | |
| 24 | 20, 23 | biimtrdi 253 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈)) |
| 25 | 17, 24 | mpd 15 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 26 | 11, 16, 3, 25 | estrcid 18040 | . . 3 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋))) |
| 27 | ringcid.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝑋) | |
| 28 | 27 | eqcomi 2740 | . . . . 5 ⊢ (Base‘𝑋) = 𝑆 |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑋) = 𝑆) |
| 30 | 29 | reseq2d 5927 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆)) |
| 31 | 26, 30 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆)) |
| 32 | 9, 22, 31 | 3eqtr2d 2772 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 I cid 5508 × cxp 5612 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Idccid 17571 ↾cat cresc 17715 ExtStrCatcestrc 18028 Ringcrg 20151 RingHom crh 20387 RingCatcringc 20560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-resc 17718 df-subc 17719 df-estrc 18029 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-ghm 19125 df-mgp 20059 df-ur 20100 df-ring 20153 df-rhm 20390 df-ringc 20561 |
| This theorem is referenced by: ringcsect 20585 srhmsubc 20595 funcringcsetcALTV2lem7 48406 |
| Copyright terms: Public domain | W3C validator |