MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringccat Structured version   Visualization version   GIF version

Theorem ringccat 20630
Description: The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
ringccat.c 𝐶 = (RingCat‘𝑈)
Assertion
Ref Expression
ringccat (𝑈𝑉𝐶 ∈ Cat)

Proof of Theorem ringccat
StepHypRef Expression
1 ringccat.c . . 3 𝐶 = (RingCat‘𝑈)
2 id 22 . . 3 (𝑈𝑉𝑈𝑉)
3 eqidd 2735 . . 3 (𝑈𝑉 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring))
4 eqidd 2735 . . 3 (𝑈𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))
51, 2, 3, 4ringcval 20614 . 2 (𝑈𝑉𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))
6 eqid 2734 . . 3 ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))
7 eqid 2734 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqidd 2735 . . . 4 (𝑈𝑉 → (Ring ∩ 𝑈) = (Ring ∩ 𝑈))
9 incom 4189 . . . . . . 7 (𝑈 ∩ Ring) = (Ring ∩ 𝑈)
109a1i 11 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈))
1110sqxpeqd 5697 . . . . 5 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Ring ∩ 𝑈) × (Ring ∩ 𝑈)))
1211reseq2d 5977 . . . 4 (𝑈𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((Ring ∩ 𝑈) × (Ring ∩ 𝑈))))
137, 2, 8, 12rhmsubcsetc 20629 . . 3 (𝑈𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈)))
146, 13subccat 17863 . 2 (𝑈𝑉 → ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) ∈ Cat)
155, 14eqeltrd 2833 1 (𝑈𝑉𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cin 3930   × cxp 5663  cres 5667  cfv 6540  (class class class)co 7412  Catccat 17677  cat cresc 17822  ExtStrCatcestrc 18136  Ringcrg 20197   RingHom crh 20436  RingCatcringc 20612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-z 12596  df-dec 12716  df-uz 12860  df-fz 13529  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-hom 17296  df-cco 17297  df-0g 17456  df-cat 17681  df-cid 17682  df-homf 17683  df-ssc 17824  df-resc 17825  df-subc 17826  df-estrc 18137  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-mhm 18764  df-grp 18922  df-ghm 19199  df-mgp 20105  df-ur 20146  df-ring 20199  df-rhm 20439  df-ringc 20613
This theorem is referenced by:  ringcsect  20637  ringcinv  20638  ringciso  20639  zrtermoringc  20642  zrninitoringc  20643  srhmsubc  20647  irinitoringc  21451  nzerooringczr  21452  funcringcsetcALTV2  48149
  Copyright terms: Public domain W3C validator