Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version |
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12732 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 0cc0 10871 < clt 11009 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-rp 12731 |
This theorem is referenced by: rpne0 12746 divlt1lt 12799 divle1le 12800 ledivge1le 12801 nnledivrp 12842 modge0 13599 modlt 13600 modid 13616 modmuladdnn0 13635 expnlbnd 13948 o1fsum 15525 isprm6 16419 gexexlem 19453 lmnn 24427 aaliou2b 25501 harmonicbnd4 26160 logfaclbnd 26370 logfacrlim 26372 chto1ub 26624 vmadivsum 26630 dchrmusumlema 26641 dchrvmasumlem2 26646 dchrisum0lem2a 26665 dchrisum0lem2 26666 dchrisum0lem3 26667 mulogsumlem 26679 mulog2sumlem2 26683 selberg2lem 26698 selberg3lem1 26705 pntrmax 26712 pntrsumo1 26713 pntibndlem3 26740 divge1b 45853 divgt1b 45854 |
Copyright terms: Public domain | W3C validator |