![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version |
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12121 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | biimpi 208 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 class class class wbr 4875 ℝcr 10258 0cc0 10259 < clt 10398 ℝ+crp 12119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-rp 12120 |
This theorem is referenced by: rpne0 12137 divlt1lt 12190 divle1le 12191 ledivge1le 12192 nnledivrp 12233 modge0 12980 modlt 12981 modid 12997 modmuladdnn0 13016 expnlbnd 13295 o1fsum 14926 isprm6 15804 gexexlem 18615 lmnn 23438 aaliou2b 24502 harmonicbnd4 25157 logfaclbnd 25367 logfacrlim 25369 chto1ub 25585 vmadivsum 25591 dchrmusumlema 25602 dchrvmasumlem2 25607 dchrisum0lem2a 25626 dchrisum0lem2 25627 dchrisum0lem3 25628 mulogsumlem 25640 mulog2sumlem2 25644 selberg2lem 25659 selberg3lem1 25666 pntrmax 25673 pntrsumo1 25674 pntibndlem3 25701 divge1b 43163 divgt1b 43164 |
Copyright terms: Public domain | W3C validator |