![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version |
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 13059 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-rp 13058 |
This theorem is referenced by: rpne0 13073 divlt1lt 13126 divle1le 13127 ledivge1le 13128 nnledivrp 13169 modge0 13930 modlt 13931 modid 13947 modmuladdnn0 13966 expnlbnd 14282 o1fsum 15861 isprm6 16761 gexexlem 19894 lmnn 25316 aaliou2b 26401 harmonicbnd4 27072 logfaclbnd 27284 logfacrlim 27286 chto1ub 27538 vmadivsum 27544 dchrmusumlema 27555 dchrvmasumlem2 27560 dchrisum0lem2a 27579 dchrisum0lem2 27580 dchrisum0lem3 27581 mulogsumlem 27593 mulog2sumlem2 27597 selberg2lem 27612 selberg3lem1 27619 pntrmax 27626 pntrsumo1 27627 pntibndlem3 27654 divge1b 48241 divgt1b 48242 |
Copyright terms: Public domain | W3C validator |