![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version |
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 13034 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 0cc0 11153 < clt 11293 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-rp 13033 |
This theorem is referenced by: rpne0 13049 divlt1lt 13102 divle1le 13103 ledivge1le 13104 nnledivrp 13145 modge0 13916 modlt 13917 modid 13933 modmuladdnn0 13953 expnlbnd 14269 o1fsum 15846 isprm6 16748 gexexlem 19885 lmnn 25311 aaliou2b 26398 harmonicbnd4 27069 logfaclbnd 27281 logfacrlim 27283 chto1ub 27535 vmadivsum 27541 dchrmusumlema 27552 dchrvmasumlem2 27557 dchrisum0lem2a 27576 dchrisum0lem2 27577 dchrisum0lem3 27578 mulogsumlem 27590 mulog2sumlem2 27594 selberg2lem 27609 selberg3lem1 27616 pntrmax 27623 pntrsumo1 27624 pntibndlem3 27651 divge1b 48358 divgt1b 48359 |
Copyright terms: Public domain | W3C validator |