| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12913 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 0cc0 11028 < clt 11168 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-rp 12912 |
| This theorem is referenced by: rpne0 12928 divlt1lt 12982 divle1le 12983 ledivge1le 12984 nnledivrp 13025 modge0 13801 modlt 13802 modid 13818 modmuladdnn0 13840 expnlbnd 14158 o1fsum 15738 isprm6 16643 gexexlem 19749 lmnn 25179 aaliou2b 26265 harmonicbnd4 26937 logfaclbnd 27149 logfacrlim 27151 chto1ub 27403 vmadivsum 27409 dchrmusumlema 27420 dchrvmasumlem2 27425 dchrisum0lem2a 27444 dchrisum0lem2 27445 dchrisum0lem3 27446 mulogsumlem 27458 mulog2sumlem2 27462 selberg2lem 27477 selberg3lem1 27484 pntrmax 27491 pntrsumo1 27492 pntibndlem3 27519 divge1b 48485 divgt1b 48486 |
| Copyright terms: Public domain | W3C validator |