| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 13037 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 ℝcr 11155 0cc0 11156 < clt 11296 ℝ+crp 13035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-rp 13036 |
| This theorem is referenced by: rpne0 13052 divlt1lt 13105 divle1le 13106 ledivge1le 13107 nnledivrp 13148 modge0 13920 modlt 13921 modid 13937 modmuladdnn0 13957 expnlbnd 14273 o1fsum 15850 isprm6 16752 gexexlem 19871 lmnn 25298 aaliou2b 26384 harmonicbnd4 27055 logfaclbnd 27267 logfacrlim 27269 chto1ub 27521 vmadivsum 27527 dchrmusumlema 27538 dchrvmasumlem2 27543 dchrisum0lem2a 27562 dchrisum0lem2 27563 dchrisum0lem3 27564 mulogsumlem 27576 mulog2sumlem2 27580 selberg2lem 27595 selberg3lem1 27602 pntrmax 27609 pntrsumo1 27610 pntibndlem3 27637 divge1b 48434 divgt1b 48435 |
| Copyright terms: Public domain | W3C validator |