| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 13018 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5123 ℝcr 11136 0cc0 11137 < clt 11277 ℝ+crp 13016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-rp 13017 |
| This theorem is referenced by: rpne0 13033 divlt1lt 13086 divle1le 13087 ledivge1le 13088 nnledivrp 13129 modge0 13901 modlt 13902 modid 13918 modmuladdnn0 13938 expnlbnd 14254 o1fsum 15831 isprm6 16733 gexexlem 19838 lmnn 25233 aaliou2b 26319 harmonicbnd4 26990 logfaclbnd 27202 logfacrlim 27204 chto1ub 27456 vmadivsum 27462 dchrmusumlema 27473 dchrvmasumlem2 27478 dchrisum0lem2a 27497 dchrisum0lem2 27498 dchrisum0lem3 27499 mulogsumlem 27511 mulog2sumlem2 27515 selberg2lem 27530 selberg3lem1 27537 pntrmax 27544 pntrsumo1 27545 pntibndlem3 27572 divge1b 48387 divgt1b 48388 |
| Copyright terms: Public domain | W3C validator |