| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12960 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-rp 12959 |
| This theorem is referenced by: rpne0 12975 divlt1lt 13029 divle1le 13030 ledivge1le 13031 nnledivrp 13072 modge0 13848 modlt 13849 modid 13865 modmuladdnn0 13887 expnlbnd 14205 o1fsum 15786 isprm6 16691 gexexlem 19789 lmnn 25170 aaliou2b 26256 harmonicbnd4 26928 logfaclbnd 27140 logfacrlim 27142 chto1ub 27394 vmadivsum 27400 dchrmusumlema 27411 dchrvmasumlem2 27416 dchrisum0lem2a 27435 dchrisum0lem2 27436 dchrisum0lem3 27437 mulogsumlem 27449 mulog2sumlem2 27453 selberg2lem 27468 selberg3lem1 27475 pntrmax 27482 pntrsumo1 27483 pntibndlem3 27510 divge1b 48505 divgt1b 48506 |
| Copyright terms: Public domain | W3C validator |