| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12953 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-rp 12952 |
| This theorem is referenced by: rpne0 12968 divlt1lt 13022 divle1le 13023 ledivge1le 13024 nnledivrp 13065 modge0 13841 modlt 13842 modid 13858 modmuladdnn0 13880 expnlbnd 14198 o1fsum 15779 isprm6 16684 gexexlem 19782 lmnn 25163 aaliou2b 26249 harmonicbnd4 26921 logfaclbnd 27133 logfacrlim 27135 chto1ub 27387 vmadivsum 27393 dchrmusumlema 27404 dchrvmasumlem2 27409 dchrisum0lem2a 27428 dchrisum0lem2 27429 dchrisum0lem3 27430 mulogsumlem 27442 mulog2sumlem2 27446 selberg2lem 27461 selberg3lem1 27468 pntrmax 27475 pntrsumo1 27476 pntibndlem3 27503 divge1b 48501 divgt1b 48502 |
| Copyright terms: Public domain | W3C validator |