Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version |
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12661 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | biimpi 215 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-rp 12660 |
This theorem is referenced by: rpne0 12675 divlt1lt 12728 divle1le 12729 ledivge1le 12730 nnledivrp 12771 modge0 13527 modlt 13528 modid 13544 modmuladdnn0 13563 expnlbnd 13876 o1fsum 15453 isprm6 16347 gexexlem 19368 lmnn 24332 aaliou2b 25406 harmonicbnd4 26065 logfaclbnd 26275 logfacrlim 26277 chto1ub 26529 vmadivsum 26535 dchrmusumlema 26546 dchrvmasumlem2 26551 dchrisum0lem2a 26570 dchrisum0lem2 26571 dchrisum0lem3 26572 mulogsumlem 26584 mulog2sumlem2 26588 selberg2lem 26603 selberg3lem1 26610 pntrmax 26617 pntrsumo1 26618 pntibndlem3 26645 divge1b 45741 divgt1b 45742 |
Copyright terms: Public domain | W3C validator |