| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 13015 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 0cc0 11134 < clt 11274 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-rp 13014 |
| This theorem is referenced by: rpne0 13030 divlt1lt 13083 divle1le 13084 ledivge1le 13085 nnledivrp 13126 modge0 13901 modlt 13902 modid 13918 modmuladdnn0 13938 expnlbnd 14256 o1fsum 15834 isprm6 16738 gexexlem 19838 lmnn 25220 aaliou2b 26306 harmonicbnd4 26978 logfaclbnd 27190 logfacrlim 27192 chto1ub 27444 vmadivsum 27450 dchrmusumlema 27461 dchrvmasumlem2 27466 dchrisum0lem2a 27485 dchrisum0lem2 27486 dchrisum0lem3 27487 mulogsumlem 27499 mulog2sumlem2 27503 selberg2lem 27518 selberg3lem1 27525 pntrmax 27532 pntrsumo1 27533 pntibndlem3 27560 divge1b 48468 divgt1b 48469 |
| Copyright terms: Public domain | W3C validator |