| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12902 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ℝcr 11015 0cc0 11016 < clt 11156 ℝ+crp 12900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-rp 12901 |
| This theorem is referenced by: rpne0 12917 divlt1lt 12971 divle1le 12972 ledivge1le 12973 nnledivrp 13014 modge0 13793 modlt 13794 modid 13810 modmuladdnn0 13832 expnlbnd 14150 o1fsum 15730 isprm6 16635 gexexlem 19774 lmnn 25200 aaliou2b 26286 harmonicbnd4 26958 logfaclbnd 27170 logfacrlim 27172 chto1ub 27424 vmadivsum 27430 dchrmusumlema 27441 dchrvmasumlem2 27446 dchrisum0lem2a 27465 dchrisum0lem2 27466 dchrisum0lem3 27467 mulogsumlem 27479 mulog2sumlem2 27483 selberg2lem 27498 selberg3lem1 27505 pntrmax 27512 pntrsumo1 27513 pntibndlem3 27540 divge1b 48627 divgt1b 48628 |
| Copyright terms: Public domain | W3C validator |