| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpregt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rpregt0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12884 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 class class class wbr 5089 ℝcr 10997 0cc0 10998 < clt 11138 ℝ+crp 12882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-rp 12883 |
| This theorem is referenced by: rpne0 12899 divlt1lt 12953 divle1le 12954 ledivge1le 12955 nnledivrp 12996 modge0 13775 modlt 13776 modid 13792 modmuladdnn0 13814 expnlbnd 14132 o1fsum 15712 isprm6 16617 gexexlem 19757 lmnn 25183 aaliou2b 26269 harmonicbnd4 26941 logfaclbnd 27153 logfacrlim 27155 chto1ub 27407 vmadivsum 27413 dchrmusumlema 27424 dchrvmasumlem2 27429 dchrisum0lem2a 27448 dchrisum0lem2 27449 dchrisum0lem3 27450 mulogsumlem 27462 mulog2sumlem2 27466 selberg2lem 27481 selberg3lem1 27488 pntrmax 27495 pntrsumo1 27496 pntibndlem3 27523 divge1b 48523 divgt1b 48524 |
| Copyright terms: Public domain | W3C validator |